33.1.10 problem Problem 11.12

Internal problem ID [7802]
Book : Schaums Outline Differential Equations, 4th edition. Bronson and Costa. McGraw Hill 2014
Section : Chapter 11. THE METHOD OF UNDETERMINED COEFFICIENTS. page 95
Problem number : Problem 11.12
Date solved : Tuesday, September 30, 2025 at 05:05:38 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }-5 y&=\left (x -1\right ) \sin \left (x \right )+\left (x +1\right ) \cos \left (x \right ) \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 29
ode:=diff(y(x),x)-5*y(x) = (x-1)*sin(x)+(1+x)*cos(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{5 x} c_1 +\frac {\left (-78 x -69\right ) \cos \left (x \right )}{338}+\frac {\left (-52 x +71\right ) \sin \left (x \right )}{338} \]
Mathematica. Time used: 0.104 (sec). Leaf size: 45
ode=D[y[x],x]-5*y[x]==(x-1)*Sin[x]+(x+1)*Cos[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{5 x} \left (\int _1^xe^{-5 K[1]} (\cos (K[1]) (K[1]+1)+(K[1]-1) \sin (K[1]))dK[1]+c_1\right ) \end{align*}
Sympy. Time used: 0.211 (sec). Leaf size: 70
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((1 - x)*sin(x) - (x + 1)*cos(x) - 5*y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{5 x} - \frac {5 \sqrt {2} x \sin {\left (x + \frac {\pi }{4} \right )}}{26} - \frac {\sqrt {2} x \cos {\left (x + \frac {\pi }{4} \right )}}{26} + \frac {\sqrt {2} \sin {\left (x + \frac {\pi }{4} \right )}}{338} - \frac {35 \sqrt {2} \cos {\left (x + \frac {\pi }{4} \right )}}{169} \]