4.14.12 Problems 1101 to 1200

Table 4.1145: First order ode non-linear in derivative

#

ODE

Mathematica

Maple

Sympy

20534

\[ {} y = x y^{\prime }+\sqrt {b^{2}-a^{2} {y^{\prime }}^{2}} \]

20535

\[ {} \left (y-x y^{\prime }\right ) \left (y^{\prime }-1\right ) = y^{\prime } \]

20536

\[ {} x {y^{\prime }}^{2}-y y^{\prime }+a = 0 \]

20537

\[ {} y = y^{\prime } \left (x -b \right )+\frac {a}{y^{\prime }} \]

20538

\[ {} y = x y^{\prime }+{y^{\prime }}^{3} \]

20539

\[ {} 4 y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

20540

\[ {} y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

20541

\[ {} x +\frac {y^{\prime }}{\sqrt {1+{y^{\prime }}^{2}}} = a \]

20542

\[ {} x^{2} {y^{\prime }}^{2}-2 y y^{\prime } x +2 y^{2} = x^{2} \]

20543

\[ {} y = x y^{\prime }+x \sqrt {1+{y^{\prime }}^{2}} \]

20544

\[ {} x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right ) = 0 \]

20545

\[ {} y = \frac {2 a {y^{\prime }}^{2}}{\left (1+{y^{\prime }}^{2}\right )^{2}} \]

20546

\[ {} \left (x y^{\prime }-y\right )^{2} = a \left (1+{y^{\prime }}^{2}\right ) \left (x^{2}+y^{2}\right )^{{3}/{2}} \]

20547

\[ {} 4 x {y^{\prime }}^{2}+4 y y^{\prime } = y^{4} \]

20548

\[ {} 2 {y^{\prime }}^{3}-\left (2 x +4 \sin \left (x \right )-\cos \left (x \right )\right ) {y^{\prime }}^{2}-\left (x \cos \left (x \right )-4 x \sin \left (x \right )+\sin \left (2 x \right )\right ) y^{\prime }+\sin \left (2 x \right ) x = 0 \]

20549

\[ {} \left (x y^{\prime }-y\right )^{2} = {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+1 \]

20551

\[ {} a^{2} y {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

20552

\[ {} x^{2} \left (y-x y^{\prime }\right ) = y {y^{\prime }}^{2} \]

20553

\[ {} \left ({y^{\prime }}^{2}-\frac {1}{a^{2}-x^{2}}\right ) \left (y^{\prime }-\sqrt {\frac {y}{x}}\right ) = 0 \]

20554

\[ {} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 y y^{\prime } x +y^{2}+a^{4} = 0 \]

20555

\[ {} y y^{\prime }+x = a {y^{\prime }}^{2} \]

20556

\[ {} x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 x y = 0 \]

20557

\[ {} 2 y = x y^{\prime }+\frac {a}{y^{\prime }} \]

20558

\[ {} y = \sqrt {1+{y^{\prime }}^{2}}+a y^{\prime } \]

20559

\[ {} \left (a {y^{\prime }}^{2}-b \right ) x y+\left (b \,x^{2}-a y^{2}+c \right ) y^{\prime } = 0 \]

20560

\[ {} y = a y^{\prime }+b {y^{\prime }}^{2} \]

20561

\[ {} {y^{\prime }}^{3}-\left (y+2 x -{\mathrm e}^{x -y}\right ) {y^{\prime }}^{2}+\left (2 x y-2 x \,{\mathrm e}^{x -y}-y \,{\mathrm e}^{x -y}\right ) y^{\prime }+2 x y \,{\mathrm e}^{x -y} = 0 \]

20563

\[ {} \left (x^{2}+1\right ) {y^{\prime }}^{2}-2 y y^{\prime } x +y^{2} = 1 \]

20566

\[ {} \left (x y^{\prime }-y\right ) \left (y y^{\prime }+x \right ) = h^{2} y^{\prime } \]

20568

\[ {} x {y^{\prime }}^{2}-2 y y^{\prime }+a x = 0 \]

20569

\[ {} y^{2}-2 y y^{\prime } x +{y^{\prime }}^{2} \left (x^{2}-1\right ) = m \]

20570

\[ {} y = x y^{\prime }-{y^{\prime }}^{2} \]

20571

\[ {} 4 {y^{\prime }}^{2} = 9 x \]

20572

\[ {} 4 x \left (x -1\right ) \left (x -2\right ) {y^{\prime }}^{2}-\left (3 x^{2}-6 x +2\right )^{2} = 0 \]

20573

\[ {} \left (8 {y^{\prime }}^{3}-27\right ) x = \frac {12 {y^{\prime }}^{2}}{x} \]

20574

\[ {} 3 y = 2 x y^{\prime }-\frac {2 {y^{\prime }}^{2}}{x} \]

20575

\[ {} {y^{\prime }}^{2}+y^{2} = 1 \]

20576

\[ {} \left (2-3 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

20577

\[ {} 4 x {y^{\prime }}^{2} = \left (3 x -1\right )^{2} \]

20578

\[ {} x {y^{\prime }}^{2}-\left (x -a \right )^{2} = 0 \]

20579

\[ {} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

20580

\[ {} 3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

20581

\[ {} {y^{\prime }}^{2}+2 x^{3} y^{\prime }-4 x^{2} y = 0 \]

20582

\[ {} y^{2} \left (y-x y^{\prime }\right ) = x^{4} {y^{\prime }}^{2} \]

20583

\[ {} \left (-a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 y y^{\prime } x -x^{2} = 0 \]

20584

\[ {} {y^{\prime }}^{4} = 4 y \left (-2 y+x y^{\prime }\right )^{2} \]

20585

\[ {} \left (1-y^{2}\right ) {y^{\prime }}^{2} = 1 \]

20586

\[ {} y+x^{2} = {y^{\prime }}^{2} \]

20587

\[ {} {y^{\prime }}^{3} = y^{4} \left (x y^{\prime }+y\right ) \]

20588

\[ {} \left (1-y^{\prime }\right )^{2}-{\mathrm e}^{-2 y} = {\mathrm e}^{-2 x} {y^{\prime }}^{2} \]

20589

\[ {} a x y {y^{\prime }}^{2}+\left (x^{2}-a y^{2}-b \right ) y^{\prime }-x y = 0 \]

20590

\[ {} {y^{\prime }}^{2} = \left (4 y+1\right ) \left (y^{\prime }-y\right ) \]

20591

\[ {} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 y y^{\prime } x +b^{2}-y^{2} = 0 \]

20592

\[ {} x y {y^{\prime }}^{2}-\left (y^{2}+x^{2}-1\right ) y^{\prime }+x y = 0 \]

20593

\[ {} x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}-h^{2}\right ) y^{\prime }-x y = 0 \]

20594

\[ {} 8 x {y^{\prime }}^{3} = y \left (12 {y^{\prime }}^{2}-9\right ) \]

20595

\[ {} 4 {y^{\prime }}^{2} x^{2} \left (x -1\right )-4 y^{\prime } x y \left (4 x -3\right )+\left (16 x -9\right ) y^{2} = 0 \]

20596

\[ {} \left (x^{2} y^{\prime }+y^{2}\right ) \left (x y^{\prime }+y\right ) = \left (1+y^{\prime }\right )^{2} \]

20599

\[ {} \left (x y^{\prime }-y\right ) \left (x -y y^{\prime }\right ) = 2 y^{\prime } \]

20828

\[ {} {y^{\prime }}^{3}-\left (x^{2}+x y+y^{2}\right ) {y^{\prime }}^{2}+\left (x y^{3}+x^{2} y^{2}+x^{3} y\right ) y^{\prime }-x^{3} y^{3} = 0 \]

20829

\[ {} x^{2} \left ({y^{\prime }}^{2}-y^{2}\right )+y^{2} = x^{4}+2 y y^{\prime } x \]

20830

\[ {} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{3}+b x \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-y^{\prime }-b x = 0 \]

20831

\[ {} \left (2 y+x \right ) {y^{\prime }}^{3}+3 \left (x +y\right ) {y^{\prime }}^{2}+\left (y+2 x \right ) y^{\prime } = 0 \]

20832

\[ {} y-\frac {1}{\sqrt {1+{y^{\prime }}^{2}}} = b \]

20833

\[ {} y = \frac {x}{y^{\prime }}-a y^{\prime } \]

20834

\[ {} {y^{\prime }}^{3}+m {y^{\prime }}^{2} = a \left (y+m x \right ) \]

20835

\[ {} x {y^{\prime }}^{3} = a +b y^{\prime } \]

20836

\[ {} y^{\prime } = \tan \left (x -\frac {y^{\prime }}{1+{y^{\prime }}^{2}}\right ) \]

20837

\[ {} a y {y^{\prime }}^{2}+\left (2 x -b \right ) y^{\prime }-y = 0 \]

20838

\[ {} y = \left (1+y^{\prime }\right ) x +{y^{\prime }}^{2} \]

20839

\[ {} {\mathrm e}^{3 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{3} = 0 \]

20840

\[ {} y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

20841

\[ {} y = -x y^{\prime }+x^{4} {y^{\prime }}^{2} \]

20842

\[ {} y-2 x y^{\prime }+a y {y^{\prime }}^{2} = 0 \]

20843

\[ {} x^{2} \left (y-x y^{\prime }\right ) = y {y^{\prime }}^{2} \]

20845

\[ {} x y^{2} \left ({y^{\prime }}^{2}+2\right ) = 2 y^{3} y^{\prime }+x^{3} \]

20846

\[ {} 3 y {y^{\prime }}^{2}-2 y y^{\prime } x +4 y^{2}-x^{2} = 0 \]

20847

\[ {} \left (y y^{\prime }+n x \right )^{2} = \left (y^{2}+n \,x^{2}\right ) \left (1+{y^{\prime }}^{2}\right ) \]

20848

\[ {} \left (1-y^{2}+\frac {y^{4}}{x^{2}}\right ) {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+\frac {y^{2}}{x^{2}} = 0 \]

20849

\[ {} \left (x^{2}+y^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (y y^{\prime }+x \right )+\left (y y^{\prime }+x \right )^{2} = 0 \]

20850

\[ {} \left (-x^{2}+1\right ) {y^{\prime }}^{2} = 1-y^{2} \]

20851

\[ {} y^{2} \left (1+{y^{\prime }}^{2}\right ) = r^{2} \]

20852

\[ {} \sin \left (x y^{\prime }\right ) \cos \left (y\right ) = \cos \left (x y^{\prime }\right ) \sin \left (y\right )+y^{\prime } \]

20853

\[ {} 4 x {y^{\prime }}^{2} = \left (3 x -a \right )^{2} \]

20854

\[ {} 4 {y^{\prime }}^{2} x \left (x -a \right ) \left (x -b \right ) = \left (3 x^{2}-2 x \left (a +b \right )+a b \right )^{2} \]

20855

\[ {} {y^{\prime }}^{3}-4 y y^{\prime } x +8 y^{2} = 0 \]

20856

\[ {} {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

20857

\[ {} x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a^{3} = 0 \]

20858

\[ {} x^{2} {y^{\prime }}^{3}+\left (y+2 x \right ) y y^{\prime }+y^{2} = 0 \]

20859

\[ {} x {y^{\prime }}^{2}-2 y y^{\prime }+x +2 y = 0 \]

20860

\[ {} {y^{\prime }}^{2} y^{2} \cos \left (a \right )^{2}-2 y^{\prime } x y \sin \left (a \right )^{2}+y^{2}-x^{2} \sin \left (a \right )^{2} = 0 \]

20861

\[ {} \left (2 x^{2}+1\right ) {y^{\prime }}^{2}+\left (y^{2}+2 x y+x^{2}+2\right ) y^{\prime }+2 y^{2}+1 = 0 \]

20943

\[ {} y = x y^{\prime }+\frac {1}{y^{\prime }} \]

20944

\[ {} y = 2 x y^{\prime }+\ln \left (y^{\prime }\right ) \]

21097

\[ {} y = x y^{\prime }-\sqrt {y^{\prime }-1} \]

21098

\[ {} y = x y^{\prime }+{y^{\prime }}^{2} \]

21100

\[ {} y = x {y^{\prime }}^{2}+\ln \left ({y^{\prime }}^{2}\right ) \]

21101

\[ {} x = y \left (y^{\prime }+\frac {1}{y^{\prime }}\right )+{y^{\prime }}^{5} \]

21148

\[ {} {\mathrm e}^{x^{\prime }} = x \]

21210

\[ {} {x^{\prime }}^{2} = x^{2}+t^{2}-1 \]