4.14.13 Problems 1201 to 1300

Table 4.1147: First order ode non-linear in derivative

#

ODE

Mathematica

Maple

Sympy

21211

\[ {} {x^{\prime }}^{2} = 4-4 x \]

21212

\[ {} {x^{\prime }}^{2}-t x+x = 0 \]

21213

\[ {} x = t x^{\prime }-{x^{\prime }}^{2} \]

21214

\[ {} x = t x^{\prime }-{\mathrm e}^{x^{\prime }} \]

21215

\[ {} x = t x^{\prime }-\ln \left (x^{\prime }\right ) \]

21216

\[ {} x = t x^{\prime }+\frac {1}{x^{\prime }} \]

21584

\[ {} \left (x y^{\prime }-y\right )^{2}-{y^{\prime }}^{2}-1 = 0 \]

21585

\[ {} {y^{\prime }}^{2} \left (x^{2}-1\right )-2 y y^{\prime } x +y^{2}-1 = 0 \]

21586

\[ {} y = x y^{\prime }+{y^{\prime }}^{3} \]

21587

\[ {} \left (x^{2}-2 x \right ) \left (1+{y^{\prime }}^{2}\right )+1 = 0 \]

21588

\[ {} 2 y^{\prime }+y-2 y^{\prime } \ln \left (y^{\prime }\right ) = 0 \]

21589

\[ {} \frac {\ln \left (1+{y^{\prime }}^{2}\right )}{2}-\ln \left (y^{\prime }\right )-x +2 = 0 \]

21677

\[ {} {y^{\prime }}^{2}-4 y = 0 \]

21678

\[ {} y-\frac {x y^{\prime }}{2}-\frac {x}{2 y^{\prime }} = 0 \]

21882

\[ {} x = y-{y^{\prime }}^{2} \]

21883

\[ {} y = 2 x y^{\prime }-{y^{\prime }}^{2} \]

21884

\[ {} y = 2 x +y^{\prime }-\frac {{y^{\prime }}^{3}}{3} \]

21885

\[ {} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

21886

\[ {} x {y^{\prime }}^{2}-3 y y^{\prime }+9 x^{2} = 0 \]

21887

\[ {} y^{\prime } \left (y^{\prime }+y\right ) = x \left (x +y\right ) \]

21888

\[ {} x^{2} {y^{\prime }}^{2}+4 y y^{\prime } x +3 y^{2} = 0 \]

21889

\[ {} x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

21890

\[ {} y {y^{\prime }}^{2}-\left (x y+x +y^{2}\right ) y^{\prime }+x^{2}+x y = 0 \]

21891

\[ {} 2 {y^{\prime }}^{2}-2 y y^{\prime }-1 = 0 \]

21892

\[ {} \left ({y^{\prime }}^{2}-y^{2}\right ) {\mathrm e}^{y^{\prime }}-x {y^{\prime }}^{2}+x y^{2} = 0 \]

21970

\[ {} {y^{\prime }}^{2}-3 = 0 \]

21971

\[ {} {y^{\prime }}^{2}-4 y^{\prime }+2 = 0 \]

21972

\[ {} x y^{2} {y^{\prime }}^{2}+\left (x^{3}+x y^{2}-y^{3}\right ) y^{\prime }+x^{3}-y^{3} = 0 \]

21973

\[ {} {y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

21974

\[ {} 2 {y^{\prime }}^{3}+3 {y^{\prime }}^{2} = x +y \]

21975

\[ {} 2 a \,x^{3} y-a \,x^{2} y^{\prime }+c {y^{\prime }}^{3} = 0 \]

21976

\[ {} y^{2}-2 y y^{\prime } x +x^{2} {y^{\prime }}^{2}-{y^{\prime }}^{3} = 0 \]

21977

\[ {} x +y {y^{\prime }}^{2} = 0 \]

21978

\[ {} 2 x +y y^{\prime } \left (4 {y^{\prime }}^{2}+6\right ) = 0 \]

21979

\[ {} 2 {y^{\prime }}^{2}+y y^{\prime }-y^{4} = 0 \]

21980

\[ {} y = 4 x {y^{\prime }}^{2}+2 x y^{\prime } \]

21981

\[ {} \left (-2 x y+x^{2}\right ) {y^{\prime }}^{2}-\left (3 x^{2}+2 y\right ) \left (x -2 y\right ) y^{\prime }+6 x y \left (x -2 y\right ) = 0 \]

21982

\[ {} {y^{\prime }}^{2}+y = x y^{\prime }+1 \]

21983

\[ {} y y^{\prime } = -x {y^{\prime }}^{2} \]

21984

\[ {} \left (y-x y^{\prime }\right )^{2} = y^{\prime } \]

21985

\[ {} y-{y^{\prime }}^{2} = 0 \]

21986

\[ {} x -x {y^{\prime }}^{2} = 0 \]

21987

\[ {} {y^{\prime }}^{3}+y {y^{\prime }}^{2}-x^{2} y^{\prime }-x^{2} y = 0 \]

21988

\[ {} y = x y^{\prime }+\ln \left (y^{\prime }\right ) \]

21989

\[ {} x {y^{\prime }}^{2} = y \]

22077

\[ {} {b^{\prime }}^{7} = 3 p \]

22416

\[ {} {y^{\prime }}^{3} = y \]

22437

\[ {} x y {y^{\prime }}^{2}-\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

22451

\[ {} \left (y^{\prime }-2 x \right ) \left (y^{\prime }-3 x^{2}\right ) = 0 \]

22452

\[ {} {| y^{\prime }|}+1 = 0 \]

22453

\[ {} 1+{y^{\prime }}^{2} = 0 \]

22454

\[ {} {| y^{\prime }|}+{| y|} = 0 \]

22617

\[ {} y = x y^{\prime }-{y^{\prime }}^{2} \]

22618

\[ {} y = x y^{\prime }+1+4 {y^{\prime }}^{2} \]

22619

\[ {} y = x y^{\prime }-\tan \left (y^{\prime }\right ) \]

22620

\[ {} y = x y^{\prime }+\sqrt {1+{y^{\prime }}^{2}} \]

22623

\[ {} y = \tan \left (x \right ) y^{\prime }-{y^{\prime }}^{2} \sec \left (x \right )^{2} \]

22718

\[ {} {y^{\prime }}^{2}+\left (3 y-2 x \right ) y^{\prime }-6 y = 0 \]

23368

\[ {} {\mathrm e}^{x} {y^{\prime }}^{2}+3 y = 0 \]

24889

\[ {} y^{2} {y^{\prime }}^{2}-x^{2} = 0 \]

24890

\[ {} x^{2} {y^{\prime }}^{2}+x y^{\prime }-y^{2}-y = 0 \]

24891

\[ {} x^{2} {y^{\prime }}^{2}-7 y y^{\prime } x +12 y^{2} = 0 \]

24892

\[ {} x {y^{\prime }}^{2}-2 \left (y+2 x \right ) y^{\prime }+8 y = 0 \]

24893

\[ {} {y^{\prime }}^{2}-\left (x^{2} y+3\right ) y^{\prime }+3 x^{2} y = 0 \]

24894

\[ {} x {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+y = 0 \]

24895

\[ {} {y^{\prime }}^{2}-x^{2} y^{2} = 0 \]

24896

\[ {} \left (x +y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

24897

\[ {} x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

24898

\[ {} y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

24899

\[ {} {y^{\prime }}^{2}-y^{\prime } x y \left (x +y\right )+x^{3} y^{3} = 0 \]

24900

\[ {} \left (4 x -y\right ) {y^{\prime }}^{2}+6 \left (x -y\right ) y^{\prime }+2 x -5 y = 0 \]

24901

\[ {} \left (x -y\right )^{2} {y^{\prime }}^{2} = y^{2} \]

24902

\[ {} x y {y^{\prime }}^{2}+\left (x y^{2}-1\right ) y^{\prime }-y = 0 \]

24903

\[ {} \left (x^{2}+y^{2}\right )^{2} {y^{\prime }}^{2} = 4 x^{2} y^{2} \]

24904

\[ {} \left (x +y\right )^{2} {y^{\prime }}^{2}+\left (2 y^{2}+x y-x^{2}\right ) y^{\prime }+y \left (y-x \right ) = 0 \]

24905

\[ {} x y \left (x^{2}+y^{2}\right ) \left ({y^{\prime }}^{2}-1\right ) = y^{\prime } \left (x^{4}+x^{2} y^{2}+y^{4}\right ) \]

24906

\[ {} x {y^{\prime }}^{3}-\left (x +x^{2}+y\right ) {y^{\prime }}^{2}+\left (x^{2}+y+x y\right ) y^{\prime }-x y = 0 \]

24907

\[ {} x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

24908

\[ {} y^{2} {y^{\prime }}^{2}-a^{2}+y^{2} = 0 \]

24909

\[ {} 4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

24910

\[ {} 3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

24911

\[ {} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

24912

\[ {} {y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

24913

\[ {} {y^{\prime }}^{2}+4 x^{5} y^{\prime }-12 x^{4} y = 0 \]

24914

\[ {} 4 y^{3} {y^{\prime }}^{2}-4 x y^{\prime }+y = 0 \]

24915

\[ {} 4 y^{3} {y^{\prime }}^{2}+4 x y^{\prime }+y = 0 \]

24916

\[ {} {y^{\prime }}^{3}+x {y^{\prime }}^{2}-y = 0 \]

24917

\[ {} y^{4} {y^{\prime }}^{3}-6 x y^{\prime }+2 y = 0 \]

24918

\[ {} {y^{\prime }}^{2}+x^{3} y^{\prime }-2 x^{2} y = 0 \]

24919

\[ {} {y^{\prime }}^{2}+4 x^{4} y^{\prime }-12 x^{4} y = 0 \]

24920

\[ {} 2 x {y^{\prime }}^{3}-6 y {y^{\prime }}^{2}+x^{4} = 0 \]

24921

\[ {} {y^{\prime }}^{2}-x y^{\prime }+y = 0 \]

24922

\[ {} y = x y^{\prime }+k {y^{\prime }}^{2} \]

24923

\[ {} x^{8} {y^{\prime }}^{2}+3 x y^{\prime }+9 y = 0 \]

24924

\[ {} x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4 = 0 \]

24925

\[ {} 4 x -2 y y^{\prime }+x {y^{\prime }}^{2} = 0 \]

24926

\[ {} 3 x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

24927

\[ {} x {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }+1-y = 0 \]

24928

\[ {} y^{\prime } \left (x y^{\prime }-y+k \right )+a = 0 \]

24929

\[ {} x^{6} {y^{\prime }}^{3}-3 x y^{\prime }-3 y = 0 \]