38.1.11 problem 13

Internal problem ID [8172]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Exercises 1.1 at page 12
Problem number : 13
Date solved : Tuesday, September 30, 2025 at 05:18:06 PM
CAS classification : [_quadrature]

\begin{align*} 2 y^{\prime }+y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 10
ode:=2*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-\frac {x}{2}} \]
Mathematica. Time used: 0.015 (sec). Leaf size: 20
ode=2*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^{-x/2}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.066 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + 2*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- \frac {x}{2}} \]