38.1.12 problem 14

Internal problem ID [8173]
Book : A First Course in Differential Equations with Modeling Applications by Dennis G. Zill. 12 ed. Metric version. 2024. Cengage learning.
Section : Chapter 1. Introduction to differential equations. Exercises 1.1 at page 12
Problem number : 14
Date solved : Tuesday, September 30, 2025 at 05:18:07 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }+20 y&=24 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 12
ode:=diff(y(t),t)+20*y(t) = 24; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {6}{5}+{\mathrm e}^{-20 t} c_1 \]
Mathematica. Time used: 0.029 (sec). Leaf size: 24
ode=D[y[t],t]+20*y[t]==24; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \frac {6}{5}+c_1 e^{-20 t}\\ y(t)&\to \frac {6}{5} \end{align*}
Sympy. Time used: 0.072 (sec). Leaf size: 12
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(20*y(t) + Derivative(y(t), t) - 24,0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = C_{1} e^{- 20 t} + \frac {6}{5} \]