Internal
problem
ID
[8643]
Book
:
ADVANCED
ENGINEERING
MATHEMATICS.
ERWIN
KREYSZIG,
HERBERT
KREYSZIG,
EDWARD
J.
NORMINTON.
10th
edition.
John
Wiley
USA.
2011
Section
:
Chapter
6.
Laplace
Transforms.
Problem
set
6.2,
page
216
Problem
number
:
11
Date
solved
:
Tuesday, September 30, 2025 at 05:40:08 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+3*diff(y(t),t)+9/4*y(t) = 9*t^3+64; ic:=[y(0) = 1, D(y)(0) = 63/2]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]+3*D[y[t],t]+225/100*y[t]==9*t^3+64; ic={y[0]==1,Derivative[1][y][0] ==315/10}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-9*t**3 + 9*y(t)/4 + 3*Derivative(y(t), t) + Derivative(y(t), (t, 2)) - 64,0) ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): 63/2} dsolve(ode,func=y(t),ics=ics)