Internal
problem
ID
[8644]
Book
:
ADVANCED
ENGINEERING
MATHEMATICS.
ERWIN
KREYSZIG,
HERBERT
KREYSZIG,
EDWARD
J.
NORMINTON.
10th
edition.
John
Wiley
USA.
2011
Section
:
Chapter
6.
Laplace
Transforms.
Problem
set
6.2,
page
216
Problem
number
:
12
Date
solved
:
Tuesday, September 30, 2025 at 05:40:08 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)-2*diff(y(t),t)-3*y(t) = 0; ic:=[y(4) = -3, D(y)(4) = -17]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,2}]-2*D[y[t],t]-3*y[t]==0; ic={y[4]==-3,Derivative[1][y][4]==-17}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-3*y(t) - 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(4): -3, Subs(Derivative(y(t), t), t, 4): -17} dsolve(ode,func=y(t),ics=ics)