76.13.13 problem 13

Internal problem ID [17524]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 4. Second order linear equations. Section 4.3 (Linear homogeneous equations with constant coefficients). Problems at page 239
Problem number : 13
Date solved : Monday, March 31, 2025 at 04:16:27 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 12
ode:=diff(diff(y(x),x),x)+5*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 \,{\mathrm e}^{-5 x} \]
Mathematica. Time used: 0.015 (sec). Leaf size: 19
ode=D[y[x],{x,2}]+5*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_2-\frac {1}{5} c_1 e^{-5 x} \]
Sympy. Time used: 0.122 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(5*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} e^{- 5 x} \]