76.13.14 problem 14

Internal problem ID [17525]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 4. Second order linear equations. Section 4.3 (Linear homogeneous equations with constant coefficients). Problems at page 239
Problem number : 14
Date solved : Monday, March 31, 2025 at 04:16:29 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 4 y^{\prime \prime }-9 y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 17
ode:=4*diff(diff(y(x),x),x)-9*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{3 x}+c_2 \right ) {\mathrm e}^{-\frac {3 x}{2}} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 24
ode=4*D[y[x],{x,2}]-9*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{-3 x/2} \left (c_1 e^{3 x}+c_2\right ) \]
Sympy. Time used: 0.062 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-9*y(x) + 4*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- \frac {3 x}{2}} + C_{2} e^{\frac {3 x}{2}} \]