Internal
problem
ID
[4168]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
6.
Linear
systems.
Exercises
at
page
110
Problem
number
:
8(c)
Date
solved
:
Sunday, March 30, 2025 at 02:41:28 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(y__1(x),x) = y__1(x)-y__2(x), diff(y__2(x),x) = 2*y__1(x)+3*y__2(x)]; dsolve(ode);
ode={D[y1[x],x]==y1[x]-y2[x],D[y2[x],x]==2*y1[x]+3*y2[x]}; ic={}; DSolve[{ode,ic},{y1[x],y2[x]},x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y__1 = Function("y__1") y__2 = Function("y__2") ode=[Eq(-y__1(x) + y__2(x) + Derivative(y__1(x), x),0),Eq(-2*y__1(x) - 3*y__2(x) + Derivative(y__2(x), x),0)] ics = {} dsolve(ode,func=[y__1(x),y__2(x)],ics=ics)