Internal
problem
ID
[4169]
Book
:
Theory
and
solutions
of
Ordinary
Differential
equations,
Donald
Greenspan,
1960
Section
:
Chapter
6.
Linear
systems.
Exercises
at
page
110
Problem
number
:
8(d)
Date
solved
:
Sunday, March 30, 2025 at 02:41:30 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(y__1(x),x) = 4*y__2(x), diff(y__2(x),x) = 4*y__2(x)-y__1(x)]; dsolve(ode);
ode={D[y1[x],x]==4*y2[x],D[y2[x],x]==4*y2[x]-y1[x]}; ic={}; DSolve[{ode,ic},{y1[x],y2[x]},x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y__1 = Function("y__1") y__2 = Function("y__2") ode=[Eq(-4*y__2(x) + Derivative(y__1(x), x),0),Eq(y__1(x) - 4*y__2(x) + Derivative(y__2(x), x),0)] ics = {} dsolve(ode,func=[y__1(x),y__2(x)],ics=ics)