4.3.53 Problems 5201 to 5300

Table 4.389: Second order ode

#

ODE

Mathematica

Maple

Sympy

16267

\[ {} y^{\prime \prime }+y = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]

16268

\[ {} y^{\prime \prime }+9 y = \tan \left (3 t \right )^{2} \]

16269

\[ {} y^{\prime \prime }+9 y = \sec \left (3 t \right ) \]

16270

\[ {} y^{\prime \prime }+9 y = \tan \left (3 t \right ) \]

16271

\[ {} y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]

16272

\[ {} y^{\prime \prime }+16 y = \tan \left (2 t \right ) \]

16273

\[ {} y^{\prime \prime }+4 y = \tan \left (t \right ) \]

16274

\[ {} y^{\prime \prime }+9 y = \sec \left (3 t \right ) \tan \left (3 t \right ) \]

16275

\[ {} y^{\prime \prime }+4 y = \sec \left (2 t \right ) \tan \left (2 t \right ) \]

16276

\[ {} y^{\prime \prime }+9 y = \frac {\csc \left (3 t \right )}{2} \]

16277

\[ {} y^{\prime \prime }+4 y = \sec \left (2 t \right )^{2} \]

16278

\[ {} y^{\prime \prime }-16 y = 16 t \,{\mathrm e}^{-4 t} \]

16279

\[ {} y^{\prime \prime }+y = \tan \left (t \right )^{2} \]

16280

\[ {} y^{\prime \prime }+4 y = \sec \left (2 t \right )+\tan \left (2 t \right ) \]

16281

\[ {} y^{\prime \prime }+9 y = \csc \left (3 t \right ) \]

16282

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = 65 \cos \left (2 t \right ) \]

16283

\[ {} t^{2} y^{\prime \prime }+3 t y^{\prime }+y = \ln \left (t \right ) \]

16284

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+4 y = t \]

16285

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 2 \ln \left (t \right ) \]

16286

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]

16287

\[ {} y^{\prime \prime }+4 y = f \left (t \right ) \]

16288

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = 0 \]

16289

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = t^{3}+2 t \]

16290

\[ {} t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

16291

\[ {} t y^{\prime \prime }+2 y^{\prime }+t y = -t \]

16292

\[ {} 4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 0 \]

16293

\[ {} 4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 16 t^{{3}/{2}} \]

16294

\[ {} t^{2} \left (\ln \left (t \right )-1\right ) y^{\prime \prime }-t y^{\prime }+y = -\frac {3 \left (1+\ln \left (t \right )\right )}{4 \sqrt {t}} \]

16295

\[ {} \left (\sin \left (t \right )-t \cos \left (t \right )\right ) y^{\prime \prime }-t \sin \left (t \right ) y^{\prime }+\sin \left (t \right ) y = t \]

16334

\[ {} 2 y y^{\prime \prime }+y^{2} = {y^{\prime }}^{2} \]

16369

\[ {} 4 x^{2} y^{\prime \prime }-8 x y^{\prime }+5 y = 0 \]

16370

\[ {} 3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

16371

\[ {} 2 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y = 0 \]

16372

\[ {} 2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

16373

\[ {} 4 x^{2} y^{\prime \prime }+17 y = 0 \]

16374

\[ {} 9 x^{2} y^{\prime \prime }-9 x y^{\prime }+10 y = 0 \]

16375

\[ {} 2 x^{2} y^{\prime \prime }-2 x y^{\prime }+20 y = 0 \]

16376

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+10 y = 0 \]

16377

\[ {} 4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]

16378

\[ {} 4 x^{2} y^{\prime \prime }+y = 0 \]

16379

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

16380

\[ {} x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

16389

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \frac {1}{x^{5}} \]

16390

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = x^{3} \]

16391

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x^{2}} \]

16392

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = \frac {1}{x^{2}} \]

16393

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 2 x \]

16394

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-16 y = \ln \left (x \right ) \]

16395

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 8 \]

16396

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+36 y = x^{2} \]

16399

\[ {} 3 x^{2} y^{\prime \prime }-4 x y^{\prime }+2 y = 0 \]

16400

\[ {} 2 x^{2} y^{\prime \prime }-7 x y^{\prime }+7 y = 0 \]

16401

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

16402

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

16407

\[ {} 2 x^{2} y^{\prime \prime }+3 x y^{\prime }-y = \frac {1}{x^{2}} \]

16408

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = \ln \left (x \right ) \]

16409

\[ {} 4 x^{2} y^{\prime \prime }+y = x^{3} \]

16410

\[ {} 9 x^{2} y^{\prime \prime }+27 x y^{\prime }+10 y = \frac {1}{x} \]

16411

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

16412

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

16413

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

16418

\[ {} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

16419

\[ {} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

16420

\[ {} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = 0 \]

16421

\[ {} \left (x^{2}+1\right )^{2} y^{\prime \prime }+2 x \left (x^{2}+1\right ) y^{\prime }+4 y = \arctan \left (x \right ) \]

16422

\[ {} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+y \left (x^{2}-1\right ) = 0 \]

16423

\[ {} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+\left (4 x^{2}-4\right ) y = 0 \]

16424

\[ {} \left (x^{4}-1\right ) y^{\prime \prime }+\left (x^{3}-x \right ) y^{\prime }+y \left (x^{2}-1\right ) = 0 \]

16425

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

16426

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = x^{2} \]

16427

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+4 y = 0 \]

16428

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

16435

\[ {} 6 x^{2} y^{\prime \prime }+5 x y^{\prime }-y = 0 \]

16487

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

16488

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

16489

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

16490

\[ {} \left (t +1\right )^{2} y^{\prime \prime }-2 \left (t +1\right ) y^{\prime }+2 y = 0 \]

16491

\[ {} t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

16492

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

16493

\[ {} 6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]

16494

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16495

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

16496

\[ {} y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]

16497

\[ {} 2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

16498

\[ {} 15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]

16499

\[ {} 20 y^{\prime \prime }+y^{\prime }-y = 0 \]

16500

\[ {} 12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

16504

\[ {} y^{\prime \prime }-2 y^{\prime }-8 y = -t \]

16505

\[ {} y^{\prime \prime }+5 y^{\prime } = 5 t^{2} \]

16506

\[ {} y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right ) \]

16507

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right ) \]

16508

\[ {} y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]

16509

\[ {} y^{\prime \prime }-2 y^{\prime } = \frac {1}{1+{\mathrm e}^{2 t}} \]

16510

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = -4 \,{\mathrm e}^{-2 t} \]

16511

\[ {} y^{\prime \prime }-6 y^{\prime }+13 y = 3 \,{\mathrm e}^{-2 t} \]

16512

\[ {} y^{\prime \prime }+9 y^{\prime }+20 y = -2 \,{\mathrm e}^{t} t \]

16513

\[ {} y^{\prime \prime }+7 y^{\prime }+12 y = 3 t^{2} {\mathrm e}^{-4 t} \]

16518

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

16519

\[ {} y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]

16520

\[ {} y^{\prime \prime }+16 y = 0 \]