29.9.4 problem 244

Internal problem ID [4844]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 9
Problem number : 244
Date solved : Sunday, March 30, 2025 at 04:03:33 AM
CAS classification : [_linear]

\begin{align*} 2 \left (1-x \right ) y^{\prime }&=4 x \sqrt {1-x}+y \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 23
ode:=2*(1-x)*diff(y(x),x) = 4*x*(1-x)^(1/2)+y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x^{2}}{\sqrt {1-x}}+\frac {c_1}{\sqrt {-1+x}} \]
Mathematica. Time used: 0.063 (sec). Leaf size: 32
ode=2(1-x)D[y[x],x]==4 x Sqrt[1-x]+y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {2 x^2+\sqrt {2} c_1}{2 \sqrt {1-x}} \]
Sympy. Time used: 3.548 (sec). Leaf size: 36
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*x*sqrt(1 - x) + (2 - 2*x)*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \sqrt {2} \left (\int \frac {y{\left (x \right )}}{\sqrt {x - 1}}\, dx + 4 \int \frac {x \sqrt {1 - x}}{\sqrt {x - 1}}\, dx\right ) = C_{1} \]