29.9.5 problem 245

Internal problem ID [4845]
Book : Ordinary differential equations and their solutions. By George Moseley Murphy. 1960
Section : Various 9
Problem number : 245
Date solved : Sunday, March 30, 2025 at 04:03:36 AM
CAS classification : [[_1st_order, _with_linear_symmetries], _rational, _Bernoulli]

\begin{align*} 2 \left (1+x \right ) y^{\prime }+2 y+\left (1+x \right )^{4} y^{3}&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 49
ode:=2*(1+x)*diff(y(x),x)+2*y(x)+(1+x)^4*y(x)^3 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {2}{\sqrt {2 x^{2}+4 c_1 +4 x}\, \left (1+x \right )} \\ y &= \frac {2}{\sqrt {2 x^{2}+4 c_1 +4 x}\, \left (1+x \right )} \\ \end{align*}
Mathematica. Time used: 0.658 (sec). Leaf size: 69
ode=2(1+x)D[y[x],x]+2 y[x]+(1+x)^4 y[x]^3==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to -\frac {\sqrt {2}}{\sqrt {(x+1)^2 \left (x^2+2 x+2 c_1\right )}} \\ y(x)\to \frac {\sqrt {2}}{\sqrt {(x+1)^2 \left (x^2+2 x+2 c_1\right )}} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.792 (sec). Leaf size: 49
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((x + 1)**4*y(x)**3 + (2*x + 2)*Derivative(y(x), x) + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {\frac {1}{C_{1} + x^{2} + 2 x}}}{x + 1}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {\frac {1}{C_{1} + x^{2} + 2 x}}}{x + 1}\right ] \]