4.8.11 Problems 1001 to 1100

Table 4.615: Third and higher order ode

#

ODE

Mathematica

Maple

Sympy

16299

\[ {} y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 0 \]

16300

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

16301

\[ {} 3 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

16302

\[ {} 6 y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

16303

\[ {} y^{\prime \prime \prime }-5 y^{\prime }+2 y = 0 \]

16304

\[ {} 5 y^{\prime \prime \prime }-15 y^{\prime }+11 y = 0 \]

16305

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]

16306

\[ {} y^{\prime \prime \prime \prime }-9 y^{\prime \prime } = 0 \]

16307

\[ {} y^{\prime \prime \prime \prime }-16 y = 0 \]

16308

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }-y^{\prime \prime }+54 y^{\prime }-72 y = 0 \]

16309

\[ {} y^{\prime \prime \prime \prime }+7 y^{\prime \prime \prime }+6 y^{\prime \prime }-32 y^{\prime }-32 y = 0 \]

16310

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }+8 y = 0 \]

16311

\[ {} y^{\left (5\right )}+4 y^{\prime \prime \prime \prime } = 0 \]

16312

\[ {} y^{\left (5\right )}+4 y^{\prime \prime \prime } = 0 \]

16313

\[ {} y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

16314

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

16315

\[ {} y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

16316

\[ {} y^{\left (6\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }+y = 0 \]

16317

\[ {} y^{\left (6\right )}+12 y^{\prime \prime \prime \prime }+48 y^{\prime \prime }+64 y = 0 \]

16318

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

16319

\[ {} y^{\prime \prime \prime }-y = 0 \]

16320

\[ {} y^{\prime \prime \prime \prime }+16 y^{\prime \prime \prime } = 0 \]

16321

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

16322

\[ {} 24 y^{\prime \prime \prime }-26 y^{\prime \prime }+9 y^{\prime }-y = 0 \]

16323

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

16324

\[ {} y^{\prime \prime \prime \prime }-16 y = 0 \]

16325

\[ {} 8 y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+66 y^{\prime \prime \prime }-41 y^{\prime \prime }-37 y^{\prime } = 0 \]

16326

\[ {} 2 y^{\left (5\right )}+7 y^{\prime \prime \prime \prime }+17 y^{\prime \prime \prime }+17 y^{\prime \prime }+5 y^{\prime } = 0 \]

16327

\[ {} y^{\left (5\right )}+8 y^{\prime \prime \prime \prime } = 0 \]

16328

\[ {} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

16329

\[ {} y^{\prime \prime \prime }+9 y^{\prime \prime }+16 y^{\prime }-26 y = 0 \]

16330

\[ {} y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }+60 y^{\prime \prime }+124 y^{\prime }+75 y = 0 \]

16331

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+6 y = 0 \]

16332

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+30 y^{\prime \prime }-56 y^{\prime }+49 y = 0 \]

16333

\[ {} \frac {31 y^{\prime \prime \prime }}{100}+\frac {56 y^{\prime \prime }}{5}-\frac {49 y^{\prime }}{5}+\frac {53 y}{10} = 0 \]

16335

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{t} \]

16336

\[ {} y^{\prime \prime \prime \prime }-16 y = 1 \]

16337

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime } = 1 \]

16338

\[ {} y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = 1 \]

16339

\[ {} y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = 9 \,{\mathrm e}^{3 t} \]

16340

\[ {} y^{\prime \prime \prime }+10 y^{\prime \prime }+34 y^{\prime }+40 y = t \,{\mathrm e}^{-4 t}+2 \,{\mathrm e}^{-3 t} \cos \left (t \right ) \]

16341

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \,{\mathrm e}^{-3 t}-t \,{\mathrm e}^{-t} \]

16342

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-24 y^{\prime }+36 y = 108 t \]

16343

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }-14 y^{\prime }-104 y = -111 \,{\mathrm e}^{t} \]

16344

\[ {} y^{\prime \prime \prime \prime }-10 y^{\prime \prime \prime }+38 y^{\prime \prime }-64 y^{\prime }+40 y = 153 \,{\mathrm e}^{-t} \]

16345

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = \tan \left (2 t \right ) \]

16346

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right ) \tan \left (2 t \right ) \]

16347

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \sec \left (2 t \right )^{2} \]

16348

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = \tan \left (2 t \right )^{2} \]

16349

\[ {} y^{\prime \prime \prime }+9 y^{\prime } = \sec \left (3 t \right ) \]

16350

\[ {} y^{\prime \prime \prime }+y^{\prime } = -\sec \left (t \right ) \tan \left (t \right ) \]

16351

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = \sec \left (2 t \right ) \]

16352

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime } = -\frac {1}{t^{2}}-\frac {2}{t} \]

16353

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = \frac {{\mathrm e}^{t}}{t} \]

16354

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }-11 y^{\prime }+30 y = {\mathrm e}^{4 t} \]

16355

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-10 y^{\prime }-24 y = {\mathrm e}^{-3 t} \]

16356

\[ {} y^{\prime \prime \prime }-13 y^{\prime }+12 y = \cos \left (t \right ) \]

16357

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = \cos \left (t \right ) \]

16358

\[ {} y^{\left (6\right )}+y^{\prime \prime \prime \prime } = -24 \]

16359

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = \tan \left (t \right )^{2} \]

16360

\[ {} y^{\prime \prime \prime }-y^{\prime \prime } = 3 t^{2} \]

16361

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sec \left (t \right )^{2} \]

16362

\[ {} y^{\prime \prime \prime }+y^{\prime } = \sec \left (t \right ) \]

16363

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = \cos \left (t \right ) \]

16364

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = t \]

16365

\[ {} t^{2} \ln \left (t \right ) y^{\prime \prime \prime }-t y^{\prime \prime }+y^{\prime } = 1 \]

16366

\[ {} \left (t^{2}+t \right ) y^{\prime \prime \prime }+\left (-t^{2}+2\right ) y^{\prime \prime }-\left (t +2\right ) y^{\prime } = -2-t \]

16367

\[ {} 2 t^{3} y^{\prime \prime \prime }+t^{2} y^{\prime \prime }+t y^{\prime }-y = -3 t^{2} \]

16368

\[ {} t y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime } = \frac {45}{8 t^{{7}/{2}}} \]

16381

\[ {} x^{3} y^{\prime \prime \prime }+22 x^{2} y^{\prime \prime }+124 x y^{\prime }+140 y = 0 \]

16382

\[ {} x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }-46 x y^{\prime }+100 y = 0 \]

16383

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

16384

\[ {} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+6 x y^{\prime }+4 y = 0 \]

16385

\[ {} x^{3} y^{\prime \prime \prime }+2 x y^{\prime }-2 y = 0 \]

16386

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-2 x y^{\prime }-2 y = 0 \]

16387

\[ {} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+7 x y^{\prime }+y = 0 \]

16388

\[ {} x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+7 x y^{\prime \prime }+y^{\prime } = 0 \]

16397

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-11 x y^{\prime }+16 y = \frac {1}{x^{3}} \]

16398

\[ {} x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+70 x y^{\prime }+80 y = \frac {1}{x^{13}} \]

16403

\[ {} x^{3} y^{\prime \prime \prime }+10 x^{2} y^{\prime \prime }-20 x y^{\prime }+20 y = 0 \]

16404

\[ {} x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+54 x y^{\prime }+42 y = 0 \]

16405

\[ {} x^{3} y^{\prime \prime \prime }-2 x^{2} y^{\prime \prime }+5 x y^{\prime }-5 y = 0 \]

16406

\[ {} x^{3} y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+17 x y^{\prime }-17 y = 0 \]

16414

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+37 x y^{\prime } = 0 \]

16415

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = 0 \]

16416

\[ {} x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = 0 \]

16417

\[ {} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }-3 x y^{\prime } = -8 \]

16429

\[ {} x^{3} y^{\prime \prime \prime }+16 x^{2} y^{\prime \prime }+79 x y^{\prime }+125 y = 0 \]

16430

\[ {} x^{4} y^{\prime \prime \prime \prime }+5 x^{3} y^{\prime \prime \prime }-12 x^{2} y^{\prime \prime }-12 x y^{\prime }+48 y = 0 \]

16431

\[ {} x^{4} y^{\prime \prime \prime \prime }+14 x^{3} y^{\prime \prime \prime }+55 x^{2} y^{\prime \prime }+65 x y^{\prime }+15 y = 0 \]

16432

\[ {} x^{4} y^{\prime \prime \prime \prime }+8 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+35 x y^{\prime }+45 y = 0 \]

16433

\[ {} x^{4} y^{\prime \prime \prime \prime }+10 x^{3} y^{\prime \prime \prime }+27 x^{2} y^{\prime \prime }+21 x y^{\prime }+4 y = 0 \]

16434

\[ {} x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+44 x y^{\prime }+58 y = 0 \]

16501

\[ {} 2 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime } = 0 \]

16502

\[ {} 9 y^{\prime \prime \prime }+36 y^{\prime \prime }+40 y^{\prime } = 0 \]

16503

\[ {} 9 y^{\prime \prime \prime }+12 y^{\prime \prime }+13 y^{\prime } = 0 \]

16514

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }+5 y = {\mathrm e}^{t} \]

16515

\[ {} y^{\prime \prime \prime }-12 y^{\prime }-16 y = {\mathrm e}^{4 t}-{\mathrm e}^{-2 t} \]

16516

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+18 y^{\prime \prime }+30 y^{\prime }+25 y = {\mathrm e}^{-t} \cos \left (2 t \right )+{\mathrm e}^{-2 t} \sin \left (t \right ) \]

16517

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }+20 y^{\prime }+25 y = t^{2} \]