31.1.22 problem 10.4

Internal problem ID [5720]
Book : Differential Equations, By George Boole F.R.S. 1865
Section : Chapter 2
Problem number : 10.4
Date solved : Sunday, March 30, 2025 at 10:06:02 AM
CAS classification : [_Bernoulli]

\begin{align*} z^{\prime }+z \cos \left (x \right )&=z^{n} \sin \left (2 x \right ) \end{align*}

Maple. Time used: 0.086 (sec). Leaf size: 49
ode:=diff(z(x),x)+z(x)*cos(x) = z(x)^n*sin(2*x); 
dsolve(ode,z(x), singsol=all);
 
\[ z = \left (\frac {{\mathrm e}^{\sin \left (x \right ) \left (n -1\right )} c_1 n -{\mathrm e}^{\sin \left (x \right ) \left (n -1\right )} c_1 +2 \sin \left (x \right ) n -2 \sin \left (x \right )+2}{n -1}\right )^{-\frac {1}{n -1}} \]
Mathematica. Time used: 6.724 (sec). Leaf size: 36
ode=D[z[x],x]+z[x]*Cos[x]==z[x]^n*Sin[2*x]; 
ic={}; 
DSolve[{ode,ic},z[x],x,IncludeSingularSolutions->True]
 
\[ z(x)\to \left (c_1 e^{(n-1) \sin (x)}+\frac {2}{n-1}+2 \sin (x)\right ){}^{\frac {1}{1-n}} \]
Sympy. Time used: 6.727 (sec). Leaf size: 228
from sympy import * 
x = symbols("x") 
n = symbols("n") 
z = Function("z") 
ode = Eq(z(x)*cos(x) - z(x)**n*sin(2*x) + Derivative(z(x), x),0) 
ics = {} 
dsolve(ode,func=z(x),ics=ics)
 
\[ z{\left (x \right )} = \begin {cases} \left (\frac {C_{1} n^{2} e^{n \sin {\left (x \right )}}}{n^{2} e^{\sin {\left (x \right )}} - 2 n e^{\sin {\left (x \right )}} + e^{\sin {\left (x \right )}}} - \frac {2 C_{1} n e^{n \sin {\left (x \right )}}}{n^{2} e^{\sin {\left (x \right )}} - 2 n e^{\sin {\left (x \right )}} + e^{\sin {\left (x \right )}}} + \frac {C_{1} e^{n \sin {\left (x \right )}}}{n^{2} e^{\sin {\left (x \right )}} - 2 n e^{\sin {\left (x \right )}} + e^{\sin {\left (x \right )}}} + \frac {2 n^{2} \sin {\left (x \right )}}{n^{2} - 2 n + 1} - \frac {4 n \sin {\left (x \right )}}{n^{2} - 2 n + 1} + \frac {2 n}{n^{2} - 2 n + 1} + \frac {2 \sin {\left (x \right )}}{n^{2} - 2 n + 1} - \frac {2}{n^{2} - 2 n + 1}\right )^{- \frac {1}{n - 1}} & \text {for}\: n > 1 \vee n < 1 \\\left (C_{1} e^{n \sin {\left (x \right )} - \sin {\left (x \right )}} - n e^{n \sin {\left (x \right )} - \sin {\left (x \right )}} \sin ^{2}{\left (x \right )} + e^{n \sin {\left (x \right )} - \sin {\left (x \right )}} \sin ^{2}{\left (x \right )}\right )^{- \frac {1}{n - 1}} & \text {otherwise} \end {cases} \]