31.1.23 problem 10.5

Internal problem ID [5721]
Book : Differential Equations, By George Boole F.R.S. 1865
Section : Chapter 2
Problem number : 10.5
Date solved : Sunday, March 30, 2025 at 10:06:08 AM
CAS classification : [_Bernoulli]

\begin{align*} x y^{\prime }+y&=y^{2} \ln \left (x \right ) \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 13
ode:=x*diff(y(x),x)+y(x) = y(x)^2*ln(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {1}{1+c_1 x +\ln \left (x \right )} \]
Mathematica. Time used: 0.167 (sec). Leaf size: 20
ode=x*D[y[x],x]+y[x]==y[x]^2*Log[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {1}{\log (x)+c_1 x+1} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.229 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - y(x)**2*log(x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {1}{C_{1} x + \log {\left (x \right )} + 1} \]