Internal
problem
ID
[5721]
Book
:
Differential
Equations,
By
George
Boole
F.R.S.
1865
Section
:
Chapter
2
Problem
number
:
10.5
Date
solved
:
Sunday, March 30, 2025 at 10:06:08 AM
CAS
classification
:
[_Bernoulli]
ode:=x*diff(y(x),x)+y(x) = y(x)^2*ln(x); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]+y[x]==y[x]^2*Log[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), x) - y(x)**2*log(x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)