4.23.6 Problems 501 to 518

Table 4.1009: Higher order, Linear, non-homogeneous and constant coefficients

#

ODE

Mathematica

Maple

Sympy

19124

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime }+y = a \,x^{2}+b \,{\mathrm e}^{-x} \sin \left (2 x \right ) \]

19127

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

19128

\[ {} y^{\prime \prime \prime \prime }-y = x \sin \left (x \right ) \]

19132

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime }+y = {\mathrm e}^{-\frac {x}{2}} \cos \left (\frac {\sqrt {3}\, x}{2}\right ) \]

19133

\[ {} y^{\left (6\right )}-2 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+3 y^{\prime \prime }-2 y^{\prime }+y = \sin \left (\frac {x}{2}\right )^{2}+{\mathrm e}^{x} \]

19134

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y = 16 x^{2}+256 \]

19136

\[ {} y^{\prime \prime \prime \prime }+10 y^{\prime \prime }+9 y = 96 \sin \left (2 x \right ) \cos \left (x \right ) \]

19139

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 24 x \cos \left (x \right ) \]

19293

\[ {} y^{\prime \prime \prime } = f \left (x \right ) \]

19340

\[ {} y^{\left (5\right )}-n^{2} y^{\prime \prime \prime } = {\mathrm e}^{a x} \]

19354

\[ {} y^{\prime \prime \prime } = \sin \left (x \right )^{2} \]

19461

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{-x} \]

19463

\[ {} y^{\prime \prime \prime }+y = \left ({\mathrm e}^{x}+1\right )^{2} \]

19465

\[ {} y^{\prime \prime \prime }+a^{2} y^{\prime } = \sin \left (a x \right ) \]

19466

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = {\mathrm e}^{x}+\cos \left (x \right ) \]

19468

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2} \]

19531

\[ {} y^{\prime \prime \prime } = {\mathrm e}^{x} x \]

19567

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{2 x} \]