4.23.5 Problems 401 to 500

Table 4.1007: Higher order, Linear, non-homogeneous and constant coefficients

#

ODE

Mathematica

Maple

Sympy

16935

\[ {} y^{\prime \prime \prime \prime }-2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (n x +\alpha \right ) \]

16936

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = \sin \left (x \right ) \]

16937

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} \]

16938

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{x} x \]

16942

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = 1 \]

16943

\[ {} 5 y^{\prime \prime \prime }-7 y^{\prime \prime } = 3 \]

16944

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime } = -6 \]

16945

\[ {} 3 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 2 \]

16946

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 1 \]

16969

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2}+x \]

16970

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

16972

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = x^{2}+x \]

16975

\[ {} y^{\prime \prime \prime }-y = \sin \left (x \right ) \]

16976

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \]

16977

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \cos \left (2 x \right ) \]

16983

\[ {} y^{\prime \prime \prime }-y^{\prime \prime } = {\mathrm e}^{x}+1 \]

16984

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = {\mathrm e}^{2 x}+\sin \left (2 x \right ) \]

16994

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{x} x +\frac {\cos \left (x \right )}{2} \]

16996

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime } = {\mathrm e}^{x}+3 \sin \left (2 x \right )+1 \]

17012

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{x}+2 x \]

17014

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 4 x +3 \sin \left (x \right )+\cos \left (x \right ) \]

17015

\[ {} y^{\prime \prime \prime }-4 y^{\prime } = x \,{\mathrm e}^{2 x}+\sin \left (x \right )+x^{2} \]

17016

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime } = {\mathrm e}^{x} x -1 \]

17017

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime } = x +2 \,{\mathrm e}^{-x} \]

17032

\[ {} y^{\prime \prime \prime }-y^{\prime } = -2 x \]

17033

\[ {} y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

17034

\[ {} y^{\prime \prime \prime }-y = 2 x \]

17035

\[ {} y^{\prime \prime \prime \prime }-y = 8 \,{\mathrm e}^{x} \]

17085

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = \frac {x -1}{x^{3}} \]

17650

\[ {} y^{\prime \prime \prime \prime }-6 y = t \,{\mathrm e}^{-t} \]

17689

\[ {} y^{\prime \prime \prime \prime }-y = \operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]

17690

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 1-\operatorname {Heaviside}\left (t -\pi \right ) \]

17705

\[ {} y^{\prime \prime \prime \prime }-y = \delta \left (t -1\right ) \]

17717

\[ {} y^{\prime \prime \prime \prime }-16 y = g \left (t \right ) \]

17718

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime }+16 y = g \left (t \right ) \]

17723

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+3 y = t \]

17899

\[ {} {y^{\prime \prime \prime }}^{2}+x^{2} = 1 \]

17947

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x} x \]

17948

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+6 y^{\prime \prime }-4 y^{\prime }+y = \left (1+x \right ) {\mathrm e}^{x} \]

18302

\[ {} y^{\prime \prime \prime \prime } = \sin \left (x \right )+24 \]

18303

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x} \]

18304

\[ {} y^{\prime \prime \prime }-y^{\prime } = 1 \]

18316

\[ {} y^{\prime \prime \prime }-2 y^{\prime }+y = 2 x^{3}-3 x^{2}+4 x +5 \]

18318

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime } = x^{2} \]

18319

\[ {} y^{\left (6\right )}-y = x^{10} \]

18322

\[ {} y^{\prime \prime \prime }-y^{\prime \prime } = 12 x -2 \]

18323

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = 9 x^{2}-2 x +1 \]

18327

\[ {} y^{\prime \prime \prime }-8 y = 16 x^{2} \]

18328

\[ {} y^{\prime \prime \prime \prime }-y = -x^{3}+1 \]

18329

\[ {} y^{\prime \prime \prime }-\frac {y^{\prime }}{4} = x \]

18330

\[ {} y^{\prime \prime \prime \prime } = \frac {1}{x^{3}} \]

18331

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime } = 1+x \]

18332

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime } = x \]

18333

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = {\mathrm e}^{2 x} \]

18334

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 12 \,{\mathrm e}^{-x} \]

18518

\[ {} x^{\prime \prime \prime \prime }-6 x^{\prime \prime \prime }+11 x^{\prime \prime }-6 x^{\prime } = {\mathrm e}^{-3 t} \]

18522

\[ {} y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = {\mathrm e}^{2 x} \]

18523

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \cos \left (x \right ) \]

18594

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }+3 y^{\prime } = x^{2} \]

18597

\[ {} y^{\prime \prime \prime }+5 y^{\prime \prime }+6 y^{\prime } = x \]

18598

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = x \]

18602

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-4 y = x \]

18604

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \cos \left (x \right ) \]

18605

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} \]

18606

\[ {} y^{\prime \prime \prime \prime }-y = x^{4} \]

18808

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-8 y^{\prime }+12 y = X \left (x \right ) \]

18809

\[ {} y^{\prime \prime \prime }+y = 3+{\mathrm e}^{-x}+5 \,{\mathrm e}^{2 x} \]

18810

\[ {} y^{\prime \prime \prime }-y = \left ({\mathrm e}^{x}+1\right )^{2} \]

18812

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2} \]

18813

\[ {} y^{\prime \prime \prime }+8 y = x^{4}+2 x +1 \]

18814

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = \cos \left (2 x \right ) \]

18817

\[ {} y^{\prime \prime \prime }+y = \sin \left (3 x \right )-\cos \left (\frac {x}{2}\right )^{2} \]

18818

\[ {} y^{\prime \prime \prime \prime }+y = x \,{\mathrm e}^{2 x} \]

18825

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x}+x^{2}+x \]

18829

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }-6 y^{\prime }+8 y = x \]

18830

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \left (b x +a \right ) \]

18831

\[ {} y^{\prime \prime \prime }-13 y^{\prime }+12 y = x \]

18832

\[ {} y^{\prime \prime \prime \prime }+2 n^{2} y^{\prime \prime }+n^{4} y = \cos \left (m x \right ) \]

18833

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

18837

\[ {} y^{\prime \prime \prime \prime }-a^{4} y = x^{4} \]

18838

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+y^{\prime \prime } = x \]

18839

\[ {} y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \cos \left (x \right ) \]

18841

\[ {} y^{\prime \prime \prime }-7 y^{\prime }-6 y = {\mathrm e}^{2 x} \left (1+x \right ) \]

18843

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-x} \]

18844

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }+4 y = x^{2} {\mathrm e}^{x} \]

18845

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = {\mathrm e}^{x} x +{\mathrm e}^{x} \]

18848

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = {\mathrm e}^{x}+\cos \left (x \right ) \]

18850

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = {\mathrm e}^{3 x} \]

18851

\[ {} y^{\prime \prime \prime }+y = {\mathrm e}^{2 x} \sin \left (x \right )+{\mathrm e}^{\frac {x}{2}} \sin \left (\frac {\sqrt {3}\, x}{2}\right ) \]

18883

\[ {} y^{\prime \prime \prime } = {\mathrm e}^{x} x \]

18899

\[ {} y^{\left (5\right )}-m^{2} y^{\prime \prime \prime } = {\mathrm e}^{a x} \]

18924

\[ {} y^{\prime \prime \prime } = \sin \left (x \right )^{2} \]

18930

\[ {} y^{\prime \prime \prime } = f \left (x \right ) \]

19112

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime }-12 y = \cos \left (4 x \right ) \]

19115

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 = 0 \]

19116

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = x \]

19117

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-6 y^{\prime } = x^{2}+1 \]

19118

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = {\mathrm e}^{2 x}+x^{2}+x \]

19119

\[ {} y^{\prime \prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{x} \]

19123

\[ {} y^{\prime \prime \prime }-7 y^{\prime }-6 y = {\mathrm e}^{2 x} \left (1+x \right ) \]