Internal
problem
ID
[7432]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.2
Homogeneous
equations
problems.
page
12
Problem
number
:
16
Date
solved
:
Sunday, March 30, 2025 at 12:03:35 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Riccati]
ode:=x^2+x*y(x)+y(x)^2 = x^2*diff(y(x),x); dsolve(ode,y(x), singsol=all);
ode=(x^2+x*y[x]+y[x]^2)==x^2*D[y[x],x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*Derivative(y(x), x) + x**2 + x*y(x) + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)