Internal
problem
ID
[7433]
Book
:
Ordinary
differential
equations
and
calculus
of
variations.
Makarets
and
Reshetnyak.
Wold
Scientific.
Singapore.
1995
Section
:
Chapter
1.
First
order
differential
equations.
Section
1.2
Homogeneous
equations
problems.
page
12
Problem
number
:
17
Date
solved
:
Sunday, March 30, 2025 at 12:03:38 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=1/(x^2-x*y(x)+y(x)^2) = 1/(2*y(x)^2-x*y(x))*diff(y(x),x); dsolve(ode,y(x), singsol=all);
ode=1/(x^2-x*y[x]+y[x]^2)==1/(2*y[x]^2-x*y[x])*D[y[x],x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(1/(x**2 - x*y(x) + y(x)**2) - Derivative(y(x), x)/(-x*y(x) + 2*y(x)**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out