49.3.9 problem 14(a)

Internal problem ID [7609]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 1. Introduction– Linear equations of First Order. Page 45
Problem number : 14(a)
Date solved : Sunday, March 30, 2025 at 12:16:58 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=1+y \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple. Time used: 0.017 (sec). Leaf size: 8
ode:=diff(y(x),x) = 1+y(x); 
ic:=y(0) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = -1+{\mathrm e}^{x} \]
Mathematica. Time used: 0.026 (sec). Leaf size: 10
ode=D[y[x],x]==1+y[x]; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^x-1 \]
Sympy. Time used: 0.144 (sec). Leaf size: 7
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + Derivative(y(x), x) - 1,0) 
ics = {y(0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = e^{x} - 1 \]