49.3.10 problem 14(b)

Internal problem ID [7610]
Book : An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section : Chapter 1. Introduction– Linear equations of First Order. Page 45
Problem number : 14(b)
Date solved : Sunday, March 30, 2025 at 12:17:00 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=1+y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple. Time used: 0.045 (sec). Leaf size: 6
ode:=diff(y(x),x) = 1+y(x)^2; 
ic:=y(0) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = \tan \left (x \right ) \]
Mathematica. Time used: 0.004 (sec). Leaf size: 7
ode=D[y[x],x]==1+y[x]^2; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \tan (x) \]
Sympy. Time used: 0.330 (sec). Leaf size: 5
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**2 + Derivative(y(x), x) - 1,0) 
ics = {y(0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \tan {\left (x \right )} \]