4.22.14 \(a+x y'(x)^3-y(x) y'(x)^2=0\)

ODE
\[ a+x y'(x)^3-y(x) y'(x)^2=0 \] ODE Classification

[[_1st_order, _with_linear_symmetries], _Clairaut]

Book solution method
Clairaut’s equation and related types, main form

Mathematica
cpu = 599.999 (sec), leaf count = 0 , timed out

$Aborted

Maple
cpu = 0.024 (sec), leaf count = 28

\[ \left \{ \left ( y \left ( x \right ) \right ) ^{3}-{\frac {27\,a{x}^{2}}{4}}=0,y \left ( x \right ) ={\frac {{{\it \_C1}}^{3}x+a}{{{\it \_C1}}^{2}}} \right \} \] Mathematica raw input

DSolve[a - y[x]*y'[x]^2 + x*y'[x]^3 == 0,y[x],x]

Mathematica raw output

$Aborted

Maple raw input

dsolve(x*diff(y(x),x)^3-y(x)*diff(y(x),x)^2+a = 0, y(x),'implicit')

Maple raw output

y(x)^3-27/4*a*x^2 = 0, y(x) = (_C1^3*x+a)/_C1^2