4.22.15 xy(x)3+(2xy(x))y(x)2+(22y(x))y(x)y(x)+1=0

ODE
xy(x)3+(2xy(x))y(x)2+(22y(x))y(x)y(x)+1=0 ODE Classification

[_dAlembert]

Book solution method
Clairaut’s equation and related types, f(yxy,y)=0

Mathematica
cpu = 526.186 (sec), leaf count = 98

Solve[{x=c1e12(K$215689+1)2+K$215689(K$215689+1)2+12(2π(e12(K$215689+2)2)(K$215689+1)2erf(K$215689+22)2K$215689),y(x)=K$2156893x+2K$2156892x+2K$215689+1(K$215689+1)2},{y(x),K$215689}]

Maple
cpu = 0.282 (sec), leaf count = 124

{y(x)=1,[x(_T)=e_T22(e_T)2(_T+1)2(2e1/2_T2(_T+1)3(e_T)2d_T+_C1),y(_T)=1(_T+1)2(_T2(e_T)2e_T22(_T+2)(_T+1)22e1/2_T2(_T+1)3(e_T)2d_T+_T2_C1(e_T)2(_T+2)(_T+1)2e_T22+2_T+1)]} Mathematica raw input

DSolve[1 - y[x] + (2 - 2*y[x])*y'[x] + (2*x - y[x])*y'[x]^2 + x*y'[x]^3 == 0,y[x],x]

Mathematica raw output

Solve[{x == E^(K$215689 + (1 + K$215689)^2/2)*(1 + K$215689)^2*C[1] + (-2*K$2156
89 - E^((2 + K$215689)^2/2)*(1 + K$215689)^2*Sqrt[2*Pi]*Erf[(2 + K$215689)/Sqrt[
2]])/2, y[x] == (1 + 2*K$215689 + 2*K$215689^2*x + K$215689^3*x)/(1 + K$215689)^
2}, {y[x], K$215689}]

Maple raw input

dsolve(x*diff(y(x),x)^3+(2*x-y(x))*diff(y(x),x)^2+(2-2*y(x))*diff(y(x),x)+1-y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = 1, [x(_T) = exp(1/2*_T^2)*exp(_T)^2*(_T+1)^2*(Int(-2/(_T+1)^3*exp(-1/2*_T
^2)/exp(_T)^2,_T)+_C1), y(_T) = (_T^2*exp(_T)^2*exp(1/2*_T^2)*(_T+2)*(_T+1)^2*In
t(-2/(_T+1)^3*exp(-1/2*_T^2)/exp(_T)^2,_T)+_T^2*_C1*exp(_T)^2*(_T+2)*(_T+1)^2*ex
p(1/2*_T^2)+2*_T+1)/(_T+1)^2]