[_dAlembert]
Book solution method
Clairaut’s equation and related types,
Mathematica ✓
cpu = 526.186 (sec), leaf count = 98
Maple ✓
cpu = 0.282 (sec), leaf count = 124
DSolve[1 - y[x] + (2 - 2*y[x])*y'[x] + (2*x - y[x])*y'[x]^2 + x*y'[x]^3 == 0,y[x],x]
Mathematica raw output
Solve[{x == E^(K$215689 + (1 + K$215689)^2/2)*(1 + K$215689)^2*C[1] + (-2*K$2156
89 - E^((2 + K$215689)^2/2)*(1 + K$215689)^2*Sqrt[2*Pi]*Erf[(2 + K$215689)/Sqrt[
2]])/2, y[x] == (1 + 2*K$215689 + 2*K$215689^2*x + K$215689^3*x)/(1 + K$215689)^
2}, {y[x], K$215689}]
Maple raw input
dsolve(x*diff(y(x),x)^3+(2*x-y(x))*diff(y(x),x)^2+(2-2*y(x))*diff(y(x),x)+1-y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = 1, [x(_T) = exp(1/2*_T^2)*exp(_T)^2*(_T+1)^2*(Int(-2/(_T+1)^3*exp(-1/2*_T
^2)/exp(_T)^2,_T)+_C1), y(_T) = (_T^2*exp(_T)^2*exp(1/2*_T^2)*(_T+2)*(_T+1)^2*In
t(-2/(_T+1)^3*exp(-1/2*_T^2)/exp(_T)^2,_T)+_T^2*_C1*exp(_T)^2*(_T+2)*(_T+1)^2*ex
p(1/2*_T^2)+2*_T+1)/(_T+1)^2]