ODE
\[ x^6 y'(x)^3-x y'(x)-y(x)=0 \] ODE Classification
[[_1st_order, _with_linear_symmetries]]
Book solution method
No Missing Variables ODE, Solve for \(y\)
Mathematica ✗
cpu = 599.998 (sec), leaf count = 0 , timed out
$Aborted
Maple ✓
cpu = 1.006 (sec), leaf count = 36
\[ \left \{ \left ( y \left ( x \right ) \right ) ^{2}-{\frac {4}{27\,{x}^{3}}}=0,[y \left ( {\it \_T} \right ) = \left ( {{\it \_C1}}^{5}-\sqrt {{\it \_T}} \right ) {\it \_C1},x \left ( {\it \_T} \right ) ={{\it \_C1}{\frac {1}{\sqrt {{\it \_T}}}}}] \right \} \] Mathematica raw input
DSolve[-y[x] - x*y'[x] + x^6*y'[x]^3 == 0,y[x],x]
Mathematica raw output
$Aborted
Maple raw input
dsolve(x^6*diff(y(x),x)^3-x*diff(y(x),x)-y(x) = 0, y(x),'implicit')
Maple raw output
y(x)^2-4/27/x^3 = 0, [y(_T) = (_C1^5-_T^(1/2))*_C1, x(_T) = _C1/_T^(1/2)]