ODE
\[ y(x) y'(x)^3-3 x y'(x)+3 y(x)=0 \] ODE Classification
[[_1st_order, _with_linear_symmetries], _dAlembert]
Book solution method
No Missing Variables ODE, Solve for \(x\)
Mathematica ✗
cpu = 599.999 (sec), leaf count = 0 , timed out
$Aborted
Maple ✓
cpu = 0.033 (sec), leaf count = 36
\[ \left \{ [x \left ( {\it \_T} \right ) ={\frac { \left ( {{\it \_T}}^{3}+3 \right ) {\it \_C1}}{{{\rm e}^{{{\it \_T}}^{-3}}}{{\it \_T}}^{3}}},y \left ( {\it \_T} \right ) =3\,{\frac {{\it \_C1}}{{{\it \_T}}^{2}{{\rm e}^{{{\it \_T}}^{-3}}}}}] \right \} \] Mathematica raw input
DSolve[3*y[x] - 3*x*y'[x] + y[x]*y'[x]^3 == 0,y[x],x]
Mathematica raw output
$Aborted
Maple raw input
dsolve(y(x)*diff(y(x),x)^3-3*x*diff(y(x),x)+3*y(x) = 0, y(x),'implicit')
Maple raw output
[x(_T) = (_T^3+3)*_C1/exp(1/_T^3)/_T^3, y(_T) = 3/_T^2*_C1/exp(1/_T^3)]