4.22.29 \(2 y(x) y'(x)^3-3 x y'(x)+2 y(x)=0\)

ODE
\[ 2 y(x) y'(x)^3-3 x y'(x)+2 y(x)=0 \] ODE Classification

[[_1st_order, _with_linear_symmetries], _dAlembert]

Book solution method
No Missing Variables ODE, Solve for \(x\)

Mathematica
cpu = 599.999 (sec), leaf count = 0 , timed out

$Aborted

Maple
cpu = 0.056 (sec), leaf count = 517

\[ \left \{ \left ( y \left ( x \right ) \right ) ^{3}-{\frac {{x}^{3}}{2}}=0,\ln \left ( x \right ) -\int ^{{\frac {y \left ( x \right ) }{x}}}\!{\frac {1}{4\,{{\it \_a}}^{4}-2\,{\it \_a}} \left ( -2\,{\frac { \left ( i\sqrt {3}-1 \right ) \left ( {{\it \_a}}^{3}-1/2 \right ) }{\sqrt [3]{ \left ( \sqrt {2}\sqrt { \left ( 2\,{{\it \_a}}^{4}-{\it \_a} \right ) ^{-1}}{{\it \_a}}^{2}+1 \right ) \left ( 2\,{{\it \_a}}^{3}-1 \right ) ^{2}}}}-i\sqrt {3}\sqrt [3]{ \left ( \sqrt {2}\sqrt { \left ( 2\,{{\it \_a}}^{4}-{\it \_a} \right ) ^{-1}}{{\it \_a}}^{2}+1 \right ) \left ( 2\,{{\it \_a}}^{3}-1 \right ) ^{2}}-4\,{{\it \_a}}^{3}-\sqrt [3]{ \left ( \sqrt {2}\sqrt { \left ( 2\,{{\it \_a}}^{4}-{\it \_a} \right ) ^{-1}}{{\it \_a}}^{2}+1 \right ) \left ( 2\,{{\it \_a}}^{3}-1 \right ) ^{2}}+2 \right ) }{d{\it \_a}}-{\it \_C1}=0,\ln \left ( x \right ) -\int ^{{\frac {y \left ( x \right ) }{x}}}\!{\frac {1}{4\,{{\it \_a}}^{4}-2\,{\it \_a}} \left ( 2\,{\frac { \left ( i\sqrt {3}+1 \right ) \left ( {{\it \_a}}^{3}-1/2 \right ) }{\sqrt [3]{ \left ( \sqrt {2}\sqrt { \left ( 2\,{{\it \_a}}^{4}-{\it \_a} \right ) ^{-1}}{{\it \_a}}^{2}+1 \right ) \left ( 2\,{{\it \_a}}^{3}-1 \right ) ^{2}}}}+i\sqrt {3}\sqrt [3]{ \left ( \sqrt {2}\sqrt { \left ( 2\,{{\it \_a}}^{4}-{\it \_a} \right ) ^{-1}}{{\it \_a}}^{2}+1 \right ) \left ( 2\,{{\it \_a}}^{3}-1 \right ) ^{2}}-4\,{{\it \_a}}^{3}-\sqrt [3]{ \left ( \sqrt {2}\sqrt { \left ( 2\,{{\it \_a}}^{4}-{\it \_a} \right ) ^{-1}}{{\it \_a}}^{2}+1 \right ) \left ( 2\,{{\it \_a}}^{3}-1 \right ) ^{2}}+2 \right ) }{d{\it \_a}}-{\it \_C1}=0,\ln \left ( x \right ) -\int ^{{\frac {y \left ( x \right ) }{x}}}\!{\frac {1}{{\it \_a}\, \left ( 2\,{{\it \_a}}^{3}-1 \right ) } \left ( \left ( -2\,\sqrt [3]{ \left ( \sqrt {2}\sqrt { \left ( 2\,{{\it \_a}}^{4}-{\it \_a} \right ) ^{-1}}{{\it \_a}}^{2}+1 \right ) \left ( 2\,{{\it \_a}}^{3}-1 \right ) ^{2}}-2 \right ) {{\it \_a}}^{3}+ \left ( \left ( \sqrt {2}\sqrt { \left ( 2\,{{\it \_a}}^{4}-{\it \_a} \right ) ^{-1}}{{\it \_a}}^{2}+1 \right ) \left ( 2\,{{\it \_a}}^{3}-1 \right ) ^{2} \right ) ^{{\frac {2}{3}}}+\sqrt [3]{ \left ( \sqrt {2}\sqrt { \left ( 2\,{{\it \_a}}^{4}-{\it \_a} \right ) ^{-1}}{{\it \_a}}^{2}+1 \right ) \left ( 2\,{{\it \_a}}^{3}-1 \right ) ^{2}}+1 \right ) {\frac {1}{\sqrt [3]{ \left ( \sqrt {2}\sqrt { \left ( 2\,{{\it \_a}}^{4}-{\it \_a} \right ) ^{-1}}{{\it \_a}}^{2}+1 \right ) \left ( 2\,{{\it \_a}}^{3}-1 \right ) ^{2}}}}}{d{\it \_a}}-{\it \_C1}=0 \right \} \] Mathematica raw input

DSolve[2*y[x] - 3*x*y'[x] + 2*y[x]*y'[x]^3 == 0,y[x],x]

Mathematica raw output

$Aborted

Maple raw input

dsolve(2*y(x)*diff(y(x),x)^3-3*x*diff(y(x),x)+2*y(x) = 0, y(x),'implicit')

Maple raw output

y(x)^3-1/2*x^3 = 0, ln(x)-Intat(((-2*((2^(1/2)*(1/(2*_a^4-_a))^(1/2)*_a^2+1)*(2*
_a^3-1)^2)^(1/3)-2)*_a^3+((2^(1/2)*(1/(2*_a^4-_a))^(1/2)*_a^2+1)*(2*_a^3-1)^2)^(
2/3)+((2^(1/2)*(1/(2*_a^4-_a))^(1/2)*_a^2+1)*(2*_a^3-1)^2)^(1/3)+1)/_a/(2*_a^3-1
)/((2^(1/2)*(1/(2*_a^4-_a))^(1/2)*_a^2+1)*(2*_a^3-1)^2)^(1/3),_a = y(x)/x)-_C1 =
 0, ln(x)-Intat((-2*(I*3^(1/2)-1)*(_a^3-1/2)/((2^(1/2)*(1/(2*_a^4-_a))^(1/2)*_a^
2+1)*(2*_a^3-1)^2)^(1/3)-I*3^(1/2)*((2^(1/2)*(1/(2*_a^4-_a))^(1/2)*_a^2+1)*(2*_a
^3-1)^2)^(1/3)-4*_a^3-((2^(1/2)*(1/(2*_a^4-_a))^(1/2)*_a^2+1)*(2*_a^3-1)^2)^(1/3
)+2)/(4*_a^4-2*_a),_a = y(x)/x)-_C1 = 0, ln(x)-Intat((2*(I*3^(1/2)+1)*(_a^3-1/2)
/((2^(1/2)*(1/(2*_a^4-_a))^(1/2)*_a^2+1)*(2*_a^3-1)^2)^(1/3)+I*3^(1/2)*((2^(1/2)
*(1/(2*_a^4-_a))^(1/2)*_a^2+1)*(2*_a^3-1)^2)^(1/3)-4*_a^3-((2^(1/2)*(1/(2*_a^4-_
a))^(1/2)*_a^2+1)*(2*_a^3-1)^2)^(1/3)+2)/(4*_a^4-2*_a),_a = y(x)/x)-_C1 = 0