4.22.35 \(4 y(x)^2 y'(x)^3-2 x y'(x)+y(x)=0\)

ODE
\[ 4 y(x)^2 y'(x)^3-2 x y'(x)+y(x)=0 \] ODE Classification

[[_1st_order, _with_linear_symmetries]]

Book solution method
No Missing Variables ODE, Solve for \(x\)

Mathematica
cpu = 599.998 (sec), leaf count = 0 , timed out

$Aborted

Maple
cpu = 0.612 (sec), leaf count = 40

\[ \left \{ \left ( y \left ( x \right ) \right ) ^{4}-{\frac {8\,{x}^{3}}{27}}=0,[x \left ( {\it \_T} \right ) ={\frac {4\,{{\it \_C1}}^{2}{{\it \_T}}^{2}+{\it \_C1}}{2\,{{\it \_T}}^{2}}},y \left ( {\it \_T} \right ) ={\frac {{\it \_C1}}{{\it \_T}}}] \right \} \] Mathematica raw input

DSolve[y[x] - 2*x*y'[x] + 4*y[x]^2*y'[x]^3 == 0,y[x],x]

Mathematica raw output

$Aborted

Maple raw input

dsolve(4*y(x)^2*diff(y(x),x)^3-2*x*diff(y(x),x)+y(x) = 0, y(x),'implicit')

Maple raw output

y(x)^4-8/27*x^3 = 0, [x(_T) = 1/2*(4*_C1^2*_T^2+_C1)/_T^2, y(_T) = 1/_T*_C1]