ODE
\[ 16 y(x)^2 y'(x)^3+2 x y'(x)-y(x)=0 \] ODE Classification
[[_1st_order, _with_linear_symmetries]]
Book solution method
Change of variable
Mathematica ✗
cpu = 600. (sec), leaf count = 0 , timed out
$Aborted
Maple ✓
cpu = 0.605 (sec), leaf count = 40
\[ \left \{ \left ( y \left ( x \right ) \right ) ^{4}+{\frac {2\,{x}^{3}}{27}}=0,[x \left ( {\it \_T} \right ) ={\frac {-16\,{{\it \_C1}}^{2}{{\it \_T}}^{2}+{\it \_C1}}{2\,{{\it \_T}}^{2}}},y \left ( {\it \_T} \right ) ={\frac {{\it \_C1}}{{\it \_T}}}] \right \} \] Mathematica raw input
DSolve[-y[x] + 2*x*y'[x] + 16*y[x]^2*y'[x]^3 == 0,y[x],x]
Mathematica raw output
$Aborted
Maple raw input
dsolve(16*y(x)^2*diff(y(x),x)^3+2*x*diff(y(x),x)-y(x) = 0, y(x),'implicit')
Maple raw output
y(x)^4+2/27*x^3 = 0, [x(_T) = 1/2*(-16*_C1^2*_T^2+_C1)/_T^2, y(_T) = 1/_T*_C1]