[_quadrature]
Book solution method
Missing Variables ODE, Independent variable missing, Solve for
Mathematica ✓
cpu = 0.502506 (sec), leaf count = 211
Maple ✓
cpu = 0.109 (sec), leaf count = 40
DSolve[b*y'[x]^2 + a*y'[x]^3 + y'[x]^5 == c*y[x],y[x],x]
Mathematica raw output
{Solve[x + C[1] == Integrate[Root[-(c*K[1]) + b*#1^2 + a*#1^3 + #1^5 & , 1]^(-1)
, {K[1], 1, y[x]}], y[x]], Solve[x + C[1] == Integrate[Root[-(c*K[2]) + b*#1^2 +
a*#1^3 + #1^5 & , 2]^(-1), {K[2], 1, y[x]}], y[x]], Solve[x + C[1] == Integrate
[Root[-(c*K[3]) + b*#1^2 + a*#1^3 + #1^5 & , 3]^(-1), {K[3], 1, y[x]}], y[x]], S
olve[x + C[1] == Integrate[Root[-(c*K[4]) + b*#1^2 + a*#1^3 + #1^5 & , 4]^(-1),
{K[4], 1, y[x]}], y[x]], Solve[x + C[1] == Integrate[Root[-(c*K[5]) + b*#1^2 + a
*#1^3 + #1^5 & , 5]^(-1), {K[5], 1, y[x]}], y[x]]}
Maple raw input
dsolve(diff(y(x),x)^5+a*diff(y(x),x)^3+b*diff(y(x),x)^2 = c*y(x), y(x),'implicit')
Maple raw output
y(x) = 0, x-Intat(1/RootOf(_Z^5+_Z^3*a+_Z^2*b-_a*c),_a = y(x))-_C1 = 0