4.23.2 ay(x)3+by(x)2+y(x)5=cy(x)

ODE
ay(x)3+by(x)2+y(x)5=cy(x) ODE Classification

[_quadrature]

Book solution method
Missing Variables ODE, Independent variable missing, Solve for y

Mathematica
cpu = 0.502506 (sec), leaf count = 211

{Solve[c1+x=1y(x)1Root[cK[1]+#15+#13a+#12b&,1]dK[1],y(x)],Solve[c1+x=1y(x)1Root[cK[2]+#15+#13a+#12b&,2]dK[2],y(x)],Solve[c1+x=1y(x)1Root[cK[3]+#15+#13a+#12b&,3]dK[3],y(x)],Solve[c1+x=1y(x)1Root[cK[4]+#15+#13a+#12b&,4]dK[4],y(x)],Solve[c1+x=1y(x)1Root[cK[5]+#15+#13a+#12b&,5]dK[5],y(x)]}

Maple
cpu = 0.109 (sec), leaf count = 40

{xy(x)(RootOf(_Z5+a_Z3+b_Z2_ac))1d_a_C1=0,y(x)=0} Mathematica raw input

DSolve[b*y'[x]^2 + a*y'[x]^3 + y'[x]^5 == c*y[x],y[x],x]

Mathematica raw output

{Solve[x + C[1] == Integrate[Root[-(c*K[1]) + b*#1^2 + a*#1^3 + #1^5 & , 1]^(-1)
, {K[1], 1, y[x]}], y[x]], Solve[x + C[1] == Integrate[Root[-(c*K[2]) + b*#1^2 +
 a*#1^3 + #1^5 & , 2]^(-1), {K[2], 1, y[x]}], y[x]], Solve[x + C[1] == Integrate
[Root[-(c*K[3]) + b*#1^2 + a*#1^3 + #1^5 & , 3]^(-1), {K[3], 1, y[x]}], y[x]], S
olve[x + C[1] == Integrate[Root[-(c*K[4]) + b*#1^2 + a*#1^3 + #1^5 & , 4]^(-1), 
{K[4], 1, y[x]}], y[x]], Solve[x + C[1] == Integrate[Root[-(c*K[5]) + b*#1^2 + a
*#1^3 + #1^5 & , 5]^(-1), {K[5], 1, y[x]}], y[x]]}

Maple raw input

dsolve(diff(y(x),x)^5+a*diff(y(x),x)^3+b*diff(y(x),x)^2 = c*y(x), y(x),'implicit')

Maple raw output

y(x) = 0, x-Intat(1/RootOf(_Z^5+_Z^3*a+_Z^2*b-_a*c),_a = y(x))-_C1 = 0