4.23.3 ay(x)4+by(x)3+cxy(x)2+y(x)5=cy(x)

ODE
ay(x)4+by(x)3+cxy(x)2+y(x)5=cy(x) ODE Classification

[_dAlembert]

Book solution method
Clairaut’s equation and related types, d’Alembert’s equation (also call Lagrange’s)

Mathematica
cpu = 317.903 (sec), leaf count = 1

$Aborted

Maple
cpu = 2.625 (sec), leaf count = 107

{y(x)=0,[x(_T)=12_T5+(12a+15)_T4+(16a12b)_T3+18b_T2+12_C1c12(_T1)2c,y(_T)=9_T6+(8a+12)_T5+(12a6b)_T4+12_T3b+12_C1c_T212(_T1)2c]} Mathematica raw input

DSolve[c*x*y'[x]^2 + b*y'[x]^3 + a*y'[x]^4 + y'[x]^5 == c*y[x],y[x],x]

Mathematica raw output

$Aborted

Maple raw input

dsolve(diff(y(x),x)^5+a*diff(y(x),x)^4+b*diff(y(x),x)^3+c*x*diff(y(x),x)^2 = c*y(x), y(x),'implicit')

Maple raw output

y(x) = 0, [x(_T) = 1/12*(-12*_T^5+(-12*a+15)*_T^4+(16*a-12*b)*_T^3+18*b*_T^2+12*
_C1*c)/(_T-1)^2/c, y(_T) = 1/12*(-9*_T^6+(-8*a+12)*_T^5+(12*a-6*b)*_T^4+12*_T^3*
b+12*_C1*c*_T^2)/(_T-1)^2/c]