4.23.6 \(f(x) (y(x)-a)^4 (y(x)-b)^3+y'(x)^6=0\)

ODE
\[ f(x) (y(x)-a)^4 (y(x)-b)^3+y'(x)^6=0 \] ODE Classification

[[_1st_order, `_with_symmetry_[F(x),G(x)*y+H(x)]`]]

Book solution method
Binomial equation \((y')^m + F(x) G(y)=0\)

Mathematica
cpu = 1.47473 (sec), leaf count = 635

\[\left \{\left \{y(x)\to \text {InverseFunction}\left [-\frac {\sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} B_{\frac {a-\text {$\#$1}}{a-b}}\left (\frac {1}{3},\frac {1}{2}\right )}{\sqrt {b-\text {$\#$1}} \sqrt [3]{\frac {a-\text {$\#$1}}{a-b}}}\& \right ]\left [\int _1^x -\sqrt [6]{f(K[1])} \, dK[1]+c_1\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [-\frac {\sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} B_{\frac {a-\text {$\#$1}}{a-b}}\left (\frac {1}{3},\frac {1}{2}\right )}{\sqrt {b-\text {$\#$1}} \sqrt [3]{\frac {a-\text {$\#$1}}{a-b}}}\& \right ]\left [\int _1^x \sqrt [6]{f(K[2])} \, dK[2]+c_1\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [-\frac {\sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} B_{\frac {a-\text {$\#$1}}{a-b}}\left (\frac {1}{3},\frac {1}{2}\right )}{\sqrt {b-\text {$\#$1}} \sqrt [3]{\frac {a-\text {$\#$1}}{a-b}}}\& \right ]\left [\int _1^x -\sqrt [3]{-1} \sqrt [6]{f(K[3])} \, dK[3]+c_1\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [-\frac {\sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} B_{\frac {a-\text {$\#$1}}{a-b}}\left (\frac {1}{3},\frac {1}{2}\right )}{\sqrt {b-\text {$\#$1}} \sqrt [3]{\frac {a-\text {$\#$1}}{a-b}}}\& \right ]\left [\int _1^x \sqrt [3]{-1} \sqrt [6]{f(K[4])} \, dK[4]+c_1\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [-\frac {\sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} B_{\frac {a-\text {$\#$1}}{a-b}}\left (\frac {1}{3},\frac {1}{2}\right )}{\sqrt {b-\text {$\#$1}} \sqrt [3]{\frac {a-\text {$\#$1}}{a-b}}}\& \right ]\left [\int _1^x -(-1)^{2/3} \sqrt [6]{f(K[5])} \, dK[5]+c_1\right ]\right \},\left \{y(x)\to \text {InverseFunction}\left [-\frac {\sqrt [3]{a-\text {$\#$1}} \sqrt {\frac {\text {$\#$1}-b}{a-b}} B_{\frac {a-\text {$\#$1}}{a-b}}\left (\frac {1}{3},\frac {1}{2}\right )}{\sqrt {b-\text {$\#$1}} \sqrt [3]{\frac {a-\text {$\#$1}}{a-b}}}\& \right ]\left [\int _1^x (-1)^{2/3} \sqrt [6]{f(K[6])} \, dK[6]+c_1\right ]\right \}\right \}\]

Maple
cpu = 0.606 (sec), leaf count = 434

\[ \left \{ \int ^{y \left ( x \right ) }\!{1{\frac {1}{\sqrt {{\it \_a}-b}}} \left ( {\it \_a}-a \right ) ^{-{\frac {2}{3}}}}{d{\it \_a}}+\int ^{x}\!{1\sqrt [6]{f \left ( {\it \_a} \right ) \left ( a-y \left ( x \right ) \right ) ^{4} \left ( b-y \left ( x \right ) \right ) ^{3}}{\frac {1}{\sqrt {y \left ( x \right ) -b}}} \left ( y \left ( x \right ) -a \right ) ^{-{\frac {2}{3}}}}{d{\it \_a}}+{\it \_C1}=0,\int ^{y \left ( x \right ) }\!{1{\frac {1}{\sqrt {{\it \_a}-b}}} \left ( {\it \_a}-a \right ) ^{-{\frac {2}{3}}}}{d{\it \_a}}+\int ^{x}\!-{1\sqrt [6]{f \left ( {\it \_a} \right ) \left ( a-y \left ( x \right ) \right ) ^{4} \left ( b-y \left ( x \right ) \right ) ^{3}}{\frac {1}{\sqrt {y \left ( x \right ) -b}}} \left ( y \left ( x \right ) -a \right ) ^{-{\frac {2}{3}}}}{d{\it \_a}}+{\it \_C1}=0,\int ^{y \left ( x \right ) }\!{1{\frac {1}{\sqrt {{\it \_a}-b}}} \left ( {\it \_a}-a \right ) ^{-{\frac {2}{3}}}}{d{\it \_a}}+\int ^{x}\!-{\frac {i\sqrt {3}-1}{2}\sqrt [6]{f \left ( {\it \_a} \right ) \left ( a-y \left ( x \right ) \right ) ^{4} \left ( b-y \left ( x \right ) \right ) ^{3}}{\frac {1}{\sqrt {y \left ( x \right ) -b}}} \left ( y \left ( x \right ) -a \right ) ^{-{\frac {2}{3}}}}{d{\it \_a}}+{\it \_C1}=0,\int ^{y \left ( x \right ) }\!{1{\frac {1}{\sqrt {{\it \_a}-b}}} \left ( {\it \_a}-a \right ) ^{-{\frac {2}{3}}}}{d{\it \_a}}+\int ^{x}\!{\frac {i\sqrt {3}-1}{2}\sqrt [6]{f \left ( {\it \_a} \right ) \left ( a-y \left ( x \right ) \right ) ^{4} \left ( b-y \left ( x \right ) \right ) ^{3}}{\frac {1}{\sqrt {y \left ( x \right ) -b}}} \left ( y \left ( x \right ) -a \right ) ^{-{\frac {2}{3}}}}{d{\it \_a}}+{\it \_C1}=0,\int ^{y \left ( x \right ) }\!{1{\frac {1}{\sqrt {{\it \_a}-b}}} \left ( {\it \_a}-a \right ) ^{-{\frac {2}{3}}}}{d{\it \_a}}+\int ^{x}\!-{\frac {i\sqrt {3}+1}{2}\sqrt [6]{f \left ( {\it \_a} \right ) \left ( a-y \left ( x \right ) \right ) ^{4} \left ( b-y \left ( x \right ) \right ) ^{3}}{\frac {1}{\sqrt {y \left ( x \right ) -b}}} \left ( y \left ( x \right ) -a \right ) ^{-{\frac {2}{3}}}}{d{\it \_a}}+{\it \_C1}=0,\int ^{y \left ( x \right ) }\!{1{\frac {1}{\sqrt {{\it \_a}-b}}} \left ( {\it \_a}-a \right ) ^{-{\frac {2}{3}}}}{d{\it \_a}}+\int ^{x}\!{\frac {i\sqrt {3}+1}{2}\sqrt [6]{f \left ( {\it \_a} \right ) \left ( a-y \left ( x \right ) \right ) ^{4} \left ( b-y \left ( x \right ) \right ) ^{3}}{\frac {1}{\sqrt {y \left ( x \right ) -b}}} \left ( y \left ( x \right ) -a \right ) ^{-{\frac {2}{3}}}}{d{\it \_a}}+{\it \_C1}=0 \right \} \] Mathematica raw input

DSolve[f[x]*(-a + y[x])^4*(-b + y[x])^3 + y'[x]^6 == 0,y[x],x]

Mathematica raw output

{{y[x] -> InverseFunction[-((Beta[(a - #1)/(a - b), 1/3, 1/2]*(a - #1)^(1/3)*Sqr
t[(-b + #1)/(a - b)])/(((a - #1)/(a - b))^(1/3)*Sqrt[b - #1])) & ][C[1] + Integr
ate[-f[K[1]]^(1/6), {K[1], 1, x}]]}, {y[x] -> InverseFunction[-((Beta[(a - #1)/(
a - b), 1/3, 1/2]*(a - #1)^(1/3)*Sqrt[(-b + #1)/(a - b)])/(((a - #1)/(a - b))^(1
/3)*Sqrt[b - #1])) & ][C[1] + Integrate[f[K[2]]^(1/6), {K[2], 1, x}]]}, {y[x] ->
 InverseFunction[-((Beta[(a - #1)/(a - b), 1/3, 1/2]*(a - #1)^(1/3)*Sqrt[(-b + #
1)/(a - b)])/(((a - #1)/(a - b))^(1/3)*Sqrt[b - #1])) & ][C[1] + Integrate[-((-1
)^(1/3)*f[K[3]]^(1/6)), {K[3], 1, x}]]}, {y[x] -> InverseFunction[-((Beta[(a - #
1)/(a - b), 1/3, 1/2]*(a - #1)^(1/3)*Sqrt[(-b + #1)/(a - b)])/(((a - #1)/(a - b)
)^(1/3)*Sqrt[b - #1])) & ][C[1] + Integrate[(-1)^(1/3)*f[K[4]]^(1/6), {K[4], 1, 
x}]]}, {y[x] -> InverseFunction[-((Beta[(a - #1)/(a - b), 1/3, 1/2]*(a - #1)^(1/
3)*Sqrt[(-b + #1)/(a - b)])/(((a - #1)/(a - b))^(1/3)*Sqrt[b - #1])) & ][C[1] + 
Integrate[-((-1)^(2/3)*f[K[5]]^(1/6)), {K[5], 1, x}]]}, {y[x] -> InverseFunction
[-((Beta[(a - #1)/(a - b), 1/3, 1/2]*(a - #1)^(1/3)*Sqrt[(-b + #1)/(a - b)])/(((
a - #1)/(a - b))^(1/3)*Sqrt[b - #1])) & ][C[1] + Integrate[(-1)^(2/3)*f[K[6]]^(1
/6), {K[6], 1, x}]]}}

Maple raw input

dsolve(diff(y(x),x)^6+f(x)*(y(x)-a)^4*(y(x)-b)^3 = 0, y(x),'implicit')

Maple raw output

Intat(1/(_a-b)^(1/2)/(_a-a)^(2/3),_a = y(x))+Intat(-(f(_a)*(a-y(x))^4*(b-y(x))^3
)^(1/6)/(y(x)-b)^(1/2)/(y(x)-a)^(2/3),_a = x)+_C1 = 0, Intat(1/(_a-b)^(1/2)/(_a-
a)^(2/3),_a = y(x))+Intat(1/2*(I*3^(1/2)+1)*(f(_a)*(a-y(x))^4*(b-y(x))^3)^(1/6)/
(y(x)-b)^(1/2)/(y(x)-a)^(2/3),_a = x)+_C1 = 0, Intat(1/(_a-b)^(1/2)/(_a-a)^(2/3)
,_a = y(x))+Intat(-1/2*(I*3^(1/2)-1)*(f(_a)*(a-y(x))^4*(b-y(x))^3)^(1/6)/(y(x)-b
)^(1/2)/(y(x)-a)^(2/3),_a = x)+_C1 = 0, Intat(1/(_a-b)^(1/2)/(_a-a)^(2/3),_a = y
(x))+Intat(1/2*(I*3^(1/2)-1)*(f(_a)*(a-y(x))^4*(b-y(x))^3)^(1/6)/(y(x)-b)^(1/2)/
(y(x)-a)^(2/3),_a = x)+_C1 = 0, Intat(1/(_a-b)^(1/2)/(_a-a)^(2/3),_a = y(x))+Int
at(-1/2*(I*3^(1/2)+1)*(f(_a)*(a-y(x))^4*(b-y(x))^3)^(1/6)/(y(x)-b)^(1/2)/(y(x)-a
)^(2/3),_a = x)+_C1 = 0, Intat(1/(_a-b)^(1/2)/(_a-a)^(2/3),_a = y(x))+Intat((f(_
a)*(a-y(x))^4*(b-y(x))^3)^(1/6)/(y(x)-b)^(1/2)/(y(x)-a)^(2/3),_a = x)+_C1 = 0