[_quadrature]
Book solution method
Change of variable
Mathematica ✓
cpu = 0.999114 (sec), leaf count = 569
Maple ✓
cpu = 0.413 (sec), leaf count = 250
DSolve[y'[x]^6 == (-a + y[x])^4*(-b + y[x])^3,y[x],x]
Mathematica raw output
{{y[x] -> InverseFunction[-((Beta[(a - #1)/(a - b), 1/3, 1/2]*(a - #1)^(1/3)*Sqr
t[(-b + #1)/(a - b)])/(((a - #1)/(a - b))^(1/3)*Sqrt[b - #1])) & ][(-I)*x + C[1]
]}, {y[x] -> InverseFunction[-((Beta[(a - #1)/(a - b), 1/3, 1/2]*(a - #1)^(1/3)*
Sqrt[(-b + #1)/(a - b)])/(((a - #1)/(a - b))^(1/3)*Sqrt[b - #1])) & ][I*x + C[1]
]}, {y[x] -> InverseFunction[-((Beta[(a - #1)/(a - b), 1/3, 1/2]*(a - #1)^(1/3)*
Sqrt[(-b + #1)/(a - b)])/(((a - #1)/(a - b))^(1/3)*Sqrt[b - #1])) & ][-((-1)^(1/
6)*x) + C[1]]}, {y[x] -> InverseFunction[-((Beta[(a - #1)/(a - b), 1/3, 1/2]*(a
- #1)^(1/3)*Sqrt[(-b + #1)/(a - b)])/(((a - #1)/(a - b))^(1/3)*Sqrt[b - #1])) &
][(-1)^(1/6)*x + C[1]]}, {y[x] -> InverseFunction[-((Beta[(a - #1)/(a - b), 1/3,
1/2]*(a - #1)^(1/3)*Sqrt[(-b + #1)/(a - b)])/(((a - #1)/(a - b))^(1/3)*Sqrt[b -
#1])) & ][-((-1)^(5/6)*x) + C[1]]}, {y[x] -> InverseFunction[-((Beta[(a - #1)/(
a - b), 1/3, 1/2]*(a - #1)^(1/3)*Sqrt[(-b + #1)/(a - b)])/(((a - #1)/(a - b))^(1
/3)*Sqrt[b - #1])) & ][(-1)^(5/6)*x + C[1]]}}
Maple raw input
dsolve(diff(y(x),x)^6 = (y(x)-a)^4*(y(x)-b)^3, y(x),'implicit')
Maple raw output
y(x) = a, y(x) = b, x-Intat(1/((_a-a)^4*(_a-b)^3)^(1/6),_a = y(x))-_C1 = 0, x-In
tat(-2*I/(-(-_a+a)^4*(-_a+b)^3)^(1/6)/(-3^(1/2)+I),_a = y(x))-_C1 = 0, x-Intat(-
2*I/(-(-_a+a)^4*(-_a+b)^3)^(1/6)/(3^(1/2)+I),_a = y(x))-_C1 = 0, x-Intat(2*I/(-(
-_a+a)^4*(-_a+b)^3)^(1/6)/(3^(1/2)+I),_a = y(x))-_C1 = 0, x-Intat(2*I/(-(-_a+a)^
4*(-_a+b)^3)^(1/6)/(-3^(1/2)+I),_a = y(x))-_C1 = 0, x-Intat(-1/(-(-_a+a)^4*(-_a+
b)^3)^(1/6),_a = y(x))-_C1 = 0