4.23.5 y(x)6=(y(x)a)4(y(x)b)3

ODE
y(x)6=(y(x)a)4(y(x)b)3 ODE Classification

[_quadrature]

Book solution method
Change of variable

Mathematica
cpu = 0.999114 (sec), leaf count = 569

{{y(x)InverseFunction[a#13#1babBa#1ab(13,12)b#1a#1ab3&][c1ix]},{y(x)InverseFunction[a#13#1babBa#1ab(13,12)b#1a#1ab3&][c1+ix]},{y(x)InverseFunction[a#13#1babBa#1ab(13,12)b#1a#1ab3&][c116x]},{y(x)InverseFunction[a#13#1babBa#1ab(13,12)b#1a#1ab3&][c1+16x]},{y(x)InverseFunction[a#13#1babBa#1ab(13,12)b#1a#1ab3&][c1(1)5/6x]},{y(x)InverseFunction[a#13#1babBa#1ab(13,12)b#1a#1ab3&][c1+(1)5/6x]}}

Maple
cpu = 0.413 (sec), leaf count = 250

{xy(x)1(_aa)4(_ab)36d_a_C1=0,xy(x)2i3+i1(_a+a)4(_a+b)36d_a_C1=0,xy(x)2i3+i1(_a+a)4(_a+b)36d_a_C1=0,xy(x)2i3+i1(_a+a)4(_a+b)36d_a_C1=0,xy(x)2i3+i1(_a+a)4(_a+b)36d_a_C1=0,xy(x)1(_a+a)4(_a+b)36d_a_C1=0,y(x)=a,y(x)=b} Mathematica raw input

DSolve[y'[x]^6 == (-a + y[x])^4*(-b + y[x])^3,y[x],x]

Mathematica raw output

{{y[x] -> InverseFunction[-((Beta[(a - #1)/(a - b), 1/3, 1/2]*(a - #1)^(1/3)*Sqr
t[(-b + #1)/(a - b)])/(((a - #1)/(a - b))^(1/3)*Sqrt[b - #1])) & ][(-I)*x + C[1]
]}, {y[x] -> InverseFunction[-((Beta[(a - #1)/(a - b), 1/3, 1/2]*(a - #1)^(1/3)*
Sqrt[(-b + #1)/(a - b)])/(((a - #1)/(a - b))^(1/3)*Sqrt[b - #1])) & ][I*x + C[1]
]}, {y[x] -> InverseFunction[-((Beta[(a - #1)/(a - b), 1/3, 1/2]*(a - #1)^(1/3)*
Sqrt[(-b + #1)/(a - b)])/(((a - #1)/(a - b))^(1/3)*Sqrt[b - #1])) & ][-((-1)^(1/
6)*x) + C[1]]}, {y[x] -> InverseFunction[-((Beta[(a - #1)/(a - b), 1/3, 1/2]*(a 
- #1)^(1/3)*Sqrt[(-b + #1)/(a - b)])/(((a - #1)/(a - b))^(1/3)*Sqrt[b - #1])) & 
][(-1)^(1/6)*x + C[1]]}, {y[x] -> InverseFunction[-((Beta[(a - #1)/(a - b), 1/3,
 1/2]*(a - #1)^(1/3)*Sqrt[(-b + #1)/(a - b)])/(((a - #1)/(a - b))^(1/3)*Sqrt[b -
 #1])) & ][-((-1)^(5/6)*x) + C[1]]}, {y[x] -> InverseFunction[-((Beta[(a - #1)/(
a - b), 1/3, 1/2]*(a - #1)^(1/3)*Sqrt[(-b + #1)/(a - b)])/(((a - #1)/(a - b))^(1
/3)*Sqrt[b - #1])) & ][(-1)^(5/6)*x + C[1]]}}

Maple raw input

dsolve(diff(y(x),x)^6 = (y(x)-a)^4*(y(x)-b)^3, y(x),'implicit')

Maple raw output

y(x) = a, y(x) = b, x-Intat(1/((_a-a)^4*(_a-b)^3)^(1/6),_a = y(x))-_C1 = 0, x-In
tat(-2*I/(-(-_a+a)^4*(-_a+b)^3)^(1/6)/(-3^(1/2)+I),_a = y(x))-_C1 = 0, x-Intat(-
2*I/(-(-_a+a)^4*(-_a+b)^3)^(1/6)/(3^(1/2)+I),_a = y(x))-_C1 = 0, x-Intat(2*I/(-(
-_a+a)^4*(-_a+b)^3)^(1/6)/(3^(1/2)+I),_a = y(x))-_C1 = 0, x-Intat(2*I/(-(-_a+a)^
4*(-_a+b)^3)^(1/6)/(-3^(1/2)+I),_a = y(x))-_C1 = 0, x-Intat(-1/(-(-_a+a)^4*(-_a+
b)^3)^(1/6),_a = y(x))-_C1 = 0