[[_1st_order, _with_linear_symmetries], _dAlembert]
Book solution method
No Missing Variables ODE, Solve for
Mathematica ✓
cpu = 96.7453 (sec), leaf count = 407
Maple ✓
cpu = 0.043 (sec), leaf count = 53
DSolve[-(a*x) - a*y[x]*y'[x] + Sqrt[1 + y'[x]^2] == 0,y[x],x]
Mathematica raw output
{Solve[ArcTan[x/y[x]] + ArcTan[1/Sqrt[-1 + a^2*(x^2 + y[x]^2)]] - (I/2)*Log[x^2
+ y[x]^2] - (I/2)*Log[1 - a^2*y[x]^2] + (I/4)*Log[x^2 + (-1 + a^2*x^2)*y[x]^2 +
a^2*y[x]^4 - 2*x*y[x]*Sqrt[-1 + a^2*x^2 + a^2*y[x]^2]] + (I/4)*Log[x^2 + (-1 + a
^2*x^2)*y[x]^2 + a^2*y[x]^4 + 2*x*y[x]*Sqrt[-1 + a^2*x^2 + a^2*y[x]^2]] + Sqrt[-
1 + a^2*(x^2 + y[x]^2)] == C[1], y[x]], Solve[4*ArcTan[1/Sqrt[-1 + a^2*(x^2 + y[
x]^2)]] + 4*C[1] - (2*I)*Log[x^2 + y[x]^2] - (2*I)*Log[-1 + a^2*y[x]^2] + I*Log[
x^2 - y[x]^2 + a^2*x^2*y[x]^2 + a^2*y[x]^4 - 2*x*y[x]*Sqrt[-1 + a^2*(x^2 + y[x]^
2)]] + I*Log[x^2 - y[x]^2 + a^2*x^2*y[x]^2 + a^2*y[x]^4 + 2*x*y[x]*Sqrt[-1 + a^2
*(x^2 + y[x]^2)]] + 4*Sqrt[-1 + a^2*x^2 + a^2*y[x]^2] == 4*ArcTan[x/y[x]], y[x]]
}
Maple raw input
dsolve((1+diff(y(x),x)^2)^(1/2)-a*y(x)*diff(y(x),x)-a*x = 0, y(x),'implicit')
Maple raw output
[x(_T) = 1/(_T^2+1)^(1/2)*_T*(1/a*arctan(_T)+1/_T/a+_C1), y(_T) = -(_C1*a-_T+arc
tan(_T))/(_T^2+1)^(1/2)/a]