[_dAlembert]
Book solution method
Clairaut’s equation and related types, d’Alembert’s equation (also call Lagrange’s)
Mathematica ✓
cpu = 5.75295 (sec), leaf count = 48
Maple ✓
cpu = 0.033 (sec), leaf count = 57
DSolve[y[x] - x*y'[x]^2 + Sqrt[1 + y'[x]^2] == 0,y[x],x]
Mathematica raw output
Solve[{x == (Sqrt[1 + K$258298^2] - ArcSinh[K$258298] + C[1])/(-1 + K$258298)^2,
Sqrt[1 + K$258298^2] + y[x] == K$258298^2*x}, {y[x], K$258298}]
Maple raw input
dsolve((1+diff(y(x),x)^2)^(1/2)-x*diff(y(x),x)^2+y(x) = 0, y(x),'implicit')
Maple raw output
[x(_T) = 1/(_T-1)^2*((_T^2+1)^(1/2)-arcsinh(_T)+_C1), y(_T) = ((2*_T-1)*(_T^2+1)
^(1/2)+_T^2*(-arcsinh(_T)+_C1))/(_T-1)^2]