4.23.35 axy(x)2+1+xy(x)y(x)=0

ODE
axy(x)2+1+xy(x)y(x)=0 ODE Classification

[[_homogeneous, `class A`], _dAlembert]

Book solution method
No Missing Variables ODE, Solve for y

Mathematica
cpu = 0.789498 (sec), leaf count = 369

{Solve[a(2log(xa2x)log((a21)(y(x)+ix(aa2y(x)2x21+a21))a3(x+iy(x)))+log(i(a21)(x(aa2y(x)2x21+a21)+iy(x))a3(xiy(x)))+log(y(x)2x2+1))2itan1(y(x)xa2y(x)2x21)2(a21)=c1,y(x)],Solve[2itan1(y(x)xa2y(x)2x21)+a(2log(xa2x)log((a21)(y(x)ix(aa2y(x)2x21+a21))a3(xiy(x)))+log(i(a21)(x(aa2y(x)2x21+a21)iy(x))a3(x+iy(x)))+log(y(x)2x2+1))2(a21)=c1,y(x)]}

Maple
cpu = 0.032 (sec), leaf count = 55

{[x(_T)=_C11_T2+1(eArcsinh(_T)a)1,y(_T)=_C1(a_T2+1+_T)1_T2+1(eArcsinh(_T)a)1]} Mathematica raw input

DSolve[-y[x] + x*y'[x] + a*x*Sqrt[1 + y'[x]^2] == 0,y[x],x]

Mathematica raw output

{Solve[((-2*I)*ArcTan[y[x]/(x*Sqrt[-1 + a^2 - y[x]^2/x^2])] + a*(2*Log[x - a^2*x
] + Log[1 + y[x]^2/x^2] - Log[((-1 + a^2)*(y[x] + I*x*(-1 + a^2 + a*Sqrt[-1 + a^
2 - y[x]^2/x^2])))/(a^3*(x + I*y[x]))] + Log[(I*(-1 + a^2)*(I*y[x] + x*(-1 + a^2
 + a*Sqrt[-1 + a^2 - y[x]^2/x^2])))/(a^3*(x - I*y[x]))]))/(2*(-1 + a^2)) == C[1]
, y[x]], Solve[((2*I)*ArcTan[y[x]/(x*Sqrt[-1 + a^2 - y[x]^2/x^2])] + a*(2*Log[x 
- a^2*x] + Log[1 + y[x]^2/x^2] - Log[((-1 + a^2)*(y[x] - I*x*(-1 + a^2 + a*Sqrt[
-1 + a^2 - y[x]^2/x^2])))/(a^3*(x - I*y[x]))] + Log[((-I)*(-1 + a^2)*((-I)*y[x] 
+ x*(-1 + a^2 + a*Sqrt[-1 + a^2 - y[x]^2/x^2])))/(a^3*(x + I*y[x]))]))/(2*(-1 + 
a^2)) == C[1], y[x]]}

Maple raw input

dsolve(a*x*(1+diff(y(x),x)^2)^(1/2)+x*diff(y(x),x)-y(x) = 0, y(x),'implicit')

Maple raw output

[x(_T) = 1/(_T^2+1)^(1/2)/exp(1/a*arcsinh(_T))*_C1, y(_T) = (a*(_T^2+1)^(1/2)+_T
)/(_T^2+1)^(1/2)/exp(1/a*arcsinh(_T))*_C1]