[[_homogeneous, `class A`], _dAlembert]
Book solution method
No Missing Variables ODE, Solve for
Mathematica ✓
cpu = 0.789498 (sec), leaf count = 369
Maple ✓
cpu = 0.032 (sec), leaf count = 55
DSolve[-y[x] + x*y'[x] + a*x*Sqrt[1 + y'[x]^2] == 0,y[x],x]
Mathematica raw output
{Solve[((-2*I)*ArcTan[y[x]/(x*Sqrt[-1 + a^2 - y[x]^2/x^2])] + a*(2*Log[x - a^2*x
] + Log[1 + y[x]^2/x^2] - Log[((-1 + a^2)*(y[x] + I*x*(-1 + a^2 + a*Sqrt[-1 + a^
2 - y[x]^2/x^2])))/(a^3*(x + I*y[x]))] + Log[(I*(-1 + a^2)*(I*y[x] + x*(-1 + a^2
+ a*Sqrt[-1 + a^2 - y[x]^2/x^2])))/(a^3*(x - I*y[x]))]))/(2*(-1 + a^2)) == C[1]
, y[x]], Solve[((2*I)*ArcTan[y[x]/(x*Sqrt[-1 + a^2 - y[x]^2/x^2])] + a*(2*Log[x
- a^2*x] + Log[1 + y[x]^2/x^2] - Log[((-1 + a^2)*(y[x] - I*x*(-1 + a^2 + a*Sqrt[
-1 + a^2 - y[x]^2/x^2])))/(a^3*(x - I*y[x]))] + Log[((-I)*(-1 + a^2)*((-I)*y[x]
+ x*(-1 + a^2 + a*Sqrt[-1 + a^2 - y[x]^2/x^2])))/(a^3*(x + I*y[x]))]))/(2*(-1 +
a^2)) == C[1], y[x]]}
Maple raw input
dsolve(a*x*(1+diff(y(x),x)^2)^(1/2)+x*diff(y(x),x)-y(x) = 0, y(x),'implicit')
Maple raw output
[x(_T) = 1/(_T^2+1)^(1/2)/exp(1/a*arcsinh(_T))*_C1, y(_T) = (a*(_T^2+1)^(1/2)+_T
)/(_T^2+1)^(1/2)/exp(1/a*arcsinh(_T))*_C1]