[[_homogeneous, `class A`], _rational, _dAlembert]
Book solution method
No Missing Variables ODE, Solve for
Mathematica ✓
cpu = 0.306254 (sec), leaf count = 148
Maple ✓
cpu = 0.262 (sec), leaf count = 129
DSolve[-(a*x) - a*y[x]*y'[x] + y[x]*Sqrt[1 + y'[x]^2] == 0,y[x],x]
Mathematica raw output
{{y[x] -> -(Sqrt[(E^(2*a^2*C[1]) + 2*(-1 + a^2)*E^((1 + a^2)*C[1])*x - (-1 + a^2
)^3*E^(2*C[1])*x^2)/E^(2*C[1])]/Sqrt[(-1 + a^2)^3])}, {y[x] -> Sqrt[(E^(2*a^2*C[
1]) + 2*(-1 + a^2)*E^((1 + a^2)*C[1])*x - (-1 + a^2)^3*E^(2*C[1])*x^2)/E^(2*C[1]
)]/Sqrt[(-1 + a^2)^3]}}
Maple raw input
dsolve(y(x)*(1+diff(y(x),x)^2)^(1/2)-a*y(x)*diff(y(x),x)-a*x = 0, y(x),'implicit')
Maple raw output
[x(_T) = exp(Int(a*(-1/(_T^2+1)^(1/2)*_T+a)/(a*_T-(_T^2+1)^(1/2))/(a*_T^2-_T*(_T
^2+1)^(1/2)+a),_T))*_C1, y(_T) = a*exp(Int(a*(-1/(_T^2+1)^(1/2)*_T+a)/(a*_T-(_T^
2+1)^(1/2))/(a*_T^2-_T*(_T^2+1)^(1/2)+a),_T))*_C1/(-a*_T+(_T^2+1)^(1/2))]