4.24.6 a(xy(x)y(x))+log(y(x))=0

ODE
a(xy(x)y(x))+log(y(x))=0 ODE Classification

[[_1st_order, _with_linear_symmetries], _Clairaut]

Book solution method
Clairaut’s equation and related types, f(yxy,y)=0

Mathematica
cpu = 0.0403451 (sec), leaf count = 21

{{y(x)ec1xc1a}}

Maple
cpu = 0.034 (sec), leaf count = 36

{y(x)1aln(1ax)+a1=0,y(x)=_C1x+ln(_C1)a} Mathematica raw input

DSolve[Log[y'[x]] + a*(-y[x] + x*y'[x]) == 0,y[x],x]

Mathematica raw output

{{y[x] -> x/E^C[1] - C[1]/a}}

Maple raw input

dsolve(ln(diff(y(x),x))+a*(x*diff(y(x),x)-y(x)) = 0, y(x),'implicit')

Maple raw output

y(x)-1/a*ln(-1/a/x)+1/a = 0, y(x) = _C1*x+ln(_C1)/a