4.24.7 a(log(y(x))y(x))+y(x)x=0

ODE
a(log(y(x))y(x))+y(x)x=0 ODE Classification

[[_homogeneous, `class C`], _dAlembert]

Book solution method
Clairaut’s equation and related types, d’Alembert’s equation (also call Lagrange’s)

Mathematica
cpu = 0.0544786 (sec), leaf count = 22

{{y(x)aexc1a+c1}}

Maple
cpu = 0.008 (sec), leaf count = 25

{y(x)=a+x,[x(_T)=aln(_T)+_C1,y(_T)=a_T+_C1]} Mathematica raw input

DSolve[-x + y[x] + a*(Log[y'[x]] - y'[x]) == 0,y[x],x]

Mathematica raw output

{{y[x] -> a*E^((x - C[1])/a) + C[1]}}

Maple raw input

dsolve(a*(ln(diff(y(x),x))-diff(y(x),x))-x+y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = a+x, [x(_T) = a*ln(_T)+_C1, y(_T) = _T*a+_C1]