4.24.21 \(x^n f\left (y'(x),\frac {y(x)}{x}\right )=0\)

ODE
\[ x^n f\left (y'(x),\frac {y(x)}{x}\right )=0 \] ODE Classification

[[_homogeneous, `class A`], _dAlembert]

Book solution method
Homogeneous ODE, \(x^n f\left ( \frac {y}{x} , y' \right )=0\)

Mathematica
cpu = 0.877079 (sec), leaf count = 34

\[\text {Solve}\left [c_1=\int _1^{\frac {y(x)}{x}} \frac {1}{K[1]-\text {InverseFunction}[f,1,2][0,K[1]]} \, dK[1]+\log (x),y(x)\right ]\]

Maple
cpu = 0.033 (sec), leaf count = 30

\[ \left \{ \ln \left ( x \right ) -\int ^{{\frac {y \left ( x \right ) }{x}}}\! \left ( {\it RootOf} \left ( f \left ( {\it \_Z},{\it \_a} \right ) \right ) -{\it \_a} \right ) ^{-1}{d{\it \_a}}-{\it \_C1}=0 \right \} \] Mathematica raw input

DSolve[x^n*f[y'[x], y[x]/x] == 0,y[x],x]

Mathematica raw output

Solve[C[1] == Integrate[(K[1] - InverseFunction[f, 1, 2][0, K[1]])^(-1), {K[1], 
1, y[x]/x}] + Log[x], y[x]]

Maple raw input

dsolve(x^n*f(diff(y(x),x),y(x)/x) = 0, y(x),'implicit')

Maple raw output

ln(x)-Intat(1/(RootOf(f(_Z,_a))-_a),_a = y(x)/x)-_C1 = 0