4.24.21 xnf(y(x),y(x)x)=0

ODE
xnf(y(x),y(x)x)=0 ODE Classification

[[_homogeneous, `class A`], _dAlembert]

Book solution method
Homogeneous ODE, xnf(yx,y)=0

Mathematica
cpu = 0.877079 (sec), leaf count = 34

Solve[c1=1y(x)x1K[1]InverseFunction[f,1,2][0,K[1]]dK[1]+log(x),y(x)]

Maple
cpu = 0.033 (sec), leaf count = 30

{ln(x)y(x)x(RootOf(f(_Z,_a))_a)1d_a_C1=0} Mathematica raw input

DSolve[x^n*f[y'[x], y[x]/x] == 0,y[x],x]

Mathematica raw output

Solve[C[1] == Integrate[(K[1] - InverseFunction[f, 1, 2][0, K[1]])^(-1), {K[1], 
1, y[x]/x}] + Log[x], y[x]]

Maple raw input

dsolve(x^n*f(diff(y(x),x),y(x)/x) = 0, y(x),'implicit')

Maple raw output

ln(x)-Intat(1/(RootOf(f(_Z,_a))-_a),_a = y(x)/x)-_C1 = 0