4.24.22 f(y(x)y(x)+x)=y(x)2(y(x)2+1)

ODE
f(y(x)y(x)+x)=y(x)2(y(x)2+1) ODE Classification

[`x=_G(y,y')`]

Book solution method
Change of variable

Mathematica
cpu = 0.0989407 (sec), leaf count = 42

Solve[{K$278007y(K$278007)+x=f(1)((K$2780072+1)y(K$278007)2),y(x)=c1K$2780072+1},{y(x),K$278007}]

Maple
cpu = 0.151 (sec), leaf count = 47

{[x(_T)=1(RootOf(_C12f(_Z))_T2+1_C1_T)1_T2+1,y(_T)=_C11_T2+1]} Mathematica raw input

DSolve[f[x + y[x]*y'[x]] == y[x]^2*(1 + y'[x]^2),y[x],x]

Mathematica raw output

Solve[{x + K$278007*y[K$278007] == InverseFunction[f, 1, 1][(1 + K$278007^2)*y[K
$278007]^2], y[x] == C[1]/Sqrt[1 + K$278007^2]}, {y[x], K$278007}]

Maple raw input

dsolve(f(y(x)*diff(y(x),x)+x) = (1+diff(y(x),x)^2)*y(x)^2, y(x),'implicit')

Maple raw output

[x(_T) = (RootOf(_C1^2-f(_Z))*(_T^2+1)^(1/2)-_C1*_T)/(_T^2+1)^(1/2), y(_T) = _C1
/(_T^2+1)^(1/2)]