4.26.10 \(y''(x)-4 y'(x)+13 y(x)=0\)

ODE
\[ y''(x)-4 y'(x)+13 y(x)=0 \] ODE Classification

[[_2nd_order, _missing_x]]

Book solution method
TO DO

Mathematica
cpu = 0.00436173 (sec), leaf count = 26

\[\left \{\left \{y(x)\to e^{2 x} \left (c_1 \sin (3 x)+c_2 \cos (3 x)\right )\right \}\right \}\]

Maple
cpu = 0.003 (sec), leaf count = 22

\[ \left \{ y \left ( x \right ) ={{\rm e}^{2\,x}} \left ( \sin \left ( 3\,x \right ) {\it \_C1}+\cos \left ( 3\,x \right ) {\it \_C2} \right ) \right \} \] Mathematica raw input

DSolve[13*y[x] - 4*y'[x] + y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> E^(2*x)*(C[2]*Cos[3*x] + C[1]*Sin[3*x])}}

Maple raw input

dsolve(diff(diff(y(x),x),x)-4*diff(y(x),x)+13*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = exp(2*x)*(sin(3*x)*_C1+cos(3*x)*_C2)