ODE
\[ y''(x)-5 y'(x)+6 y(x)=0 \] ODE Classification
[[_2nd_order, _missing_x]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.00427917 (sec), leaf count = 20
\[\left \{\left \{y(x)\to e^{2 x} \left (c_2 e^x+c_1\right )\right \}\right \}\]
Maple ✓
cpu = 0.009 (sec), leaf count = 17
\[ \left \{ y \left ( x \right ) ={\it \_C1}\,{{\rm e}^{3\,x}}+{\it \_C2}\,{{\rm e}^{2\,x}} \right \} \] Mathematica raw input
DSolve[6*y[x] - 5*y'[x] + y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> E^(2*x)*(C[1] + E^x*C[2])}}
Maple raw input
dsolve(diff(diff(y(x),x),x)-5*diff(y(x),x)+6*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = _C1*exp(3*x)+_C2*exp(2*x)