[[_2nd_order, _with_linear_symmetries]]
Book solution method
TO DO
Mathematica ✗
cpu = 1.40809 (sec), leaf count = 0 , could not solve
DSolve[a*(1 + k)*x^(-1 + k)*y[x] + a*x^k*Derivative[1][y][x] + Derivative[2][y][x] == 0, y[x], x]
Maple ✓
cpu = 0.39 (sec), leaf count = 151
DSolve[a*(1 + k)*x^(-1 + k)*y[x] + a*x^k*y'[x] + y''[x] == 0,y[x],x]
Mathematica raw output
DSolve[a*(1 + k)*x^(-1 + k)*y[x] + a*x^k*Derivative[1][y][x] + Derivative[2][y][
x] == 0, y[x], x]
Maple raw input
dsolve(diff(diff(y(x),x),x)+a*x^k*diff(y(x),x)+a*(k+1)*x^(k-1)*y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = _C1*exp(-x^(k+1)/(k+1)*a)*x+_C2*((k+1)*(x^(-1/2*k)*a-x^(-3/2*k-1)*k)*Whit
takerM((-2-k)/(2*k+2),(1+2*k)/(2*k+2),-x^(k+1)/(k+1)*a)-WhittakerM(k/(2*k+2),(1+
2*k)/(2*k+2),-x^(k+1)/(k+1)*a)*x^(-3/2*k-1)*k^2)*exp(-a*x^(k+1)/(2*k+2))