4.27.6 a(k+1)xk1y(x)+axky(x)+y(x)=0

ODE
a(k+1)xk1y(x)+axky(x)+y(x)=0 ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 1.40809 (sec), leaf count = 0 , could not solve

DSolve[a*(1 + k)*x^(-1 + k)*y[x] + a*x^k*Derivative[1][y][x] + Derivative[2][y][x] == 0, y[x], x]

Maple
cpu = 0.39 (sec), leaf count = 151

{y(x)=_C1eaxk+1k+1x+_C2((k+1)(xk2ax3k21k)M2k2k+2,1+2k2k+2(axk+1k+1)Mk2k+2,1+2k2k+2(axk+1k+1)x3k21k2)eaxk+12k+2} Mathematica raw input

DSolve[a*(1 + k)*x^(-1 + k)*y[x] + a*x^k*y'[x] + y''[x] == 0,y[x],x]

Mathematica raw output

DSolve[a*(1 + k)*x^(-1 + k)*y[x] + a*x^k*Derivative[1][y][x] + Derivative[2][y][
x] == 0, y[x], x]

Maple raw input

dsolve(diff(diff(y(x),x),x)+a*x^k*diff(y(x),x)+a*(k+1)*x^(k-1)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*exp(-x^(k+1)/(k+1)*a)*x+_C2*((k+1)*(x^(-1/2*k)*a-x^(-3/2*k-1)*k)*Whit
takerM((-2-k)/(2*k+2),(1+2*k)/(2*k+2),-x^(k+1)/(k+1)*a)-WhittakerM(k/(2*k+2),(1+
2*k)/(2*k+2),-x^(k+1)/(k+1)*a)*x^(-3/2*k-1)*k^2)*exp(-a*x^(k+1)/(2*k+2))