4.27.8 axk1y(x)+axky(x)+y(x)=0

ODE
axk1y(x)+axky(x)+y(x)=0 ODE Classification

[[_2nd_order, _with_linear_symmetries]]

Book solution method
TO DO

Mathematica
cpu = 0.0477762 (sec), leaf count = 90

{{y(x)(1k+1)1k+1k1k+1a1k+1(xk)1k(c2(1)1k+1(k+1)c1Γ(1k+1,0,a(xk)1+1kk+1))k+1}}

Maple
cpu = 0.248 (sec), leaf count = 133

{y(x)=_C1x+_C2((k+1)(xk2a+x3k21k)M2k2k+2,1+2k2k+2(axk+1k+1)+Mk2k+2,1+2k2k+2(axk+1k+1)x3k21k2)eaxk+12k+2} Mathematica raw input

DSolve[-(a*x^(-1 + k)*y[x]) + a*x^k*y'[x] + y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (a^(1 + k)^(-1)*(x^k)^k^(-1)*((-1)^(1 + k)^(-1)*(1 + k)*C[2] - C[1]*Ga
mma[-(1 + k)^(-1), 0, (a*(x^k)^(1 + k^(-1)))/(1 + k)]))/((1 + k^(-1))^(1 + k)^(-
1)*k^(1 + k)^(-1)*(1 + k))}}

Maple raw input

dsolve(diff(diff(y(x),x),x)+a*x^k*diff(y(x),x)-a*x^(k-1)*y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*x+_C2*((k+1)*(x^(-1/2*k)*a+x^(-3/2*k-1)*k)*WhittakerM((-2-k)/(2*k+2),
(1+2*k)/(2*k+2),x^(k+1)/(k+1)*a)+WhittakerM(k/(2*k+2),(1+2*k)/(2*k+2),x^(k+1)/(k
+1)*a)*x^(-3/2*k-1)*k^2)*exp(-a*x^(k+1)/(2*k+2))