ODE
\[ a y'(x)+x y''(x)=0 \] ODE Classification
[[_2nd_order, _missing_y]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.0178824 (sec), leaf count = 25
\[\left \{\left \{y(x)\to \frac {c_1 x^{1-a}}{1-a}+c_2\right \}\right \}\]
Maple ✓
cpu = 0.009 (sec), leaf count = 15
\[ \left \{ y \left ( x \right ) ={\it \_C1}+{\it \_C2}\,{x}^{1-a} \right \} \] Mathematica raw input
DSolve[a*y'[x] + x*y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> (x^(1 - a)*C[1])/(1 - a) + C[2]}}
Maple raw input
dsolve(x*diff(diff(y(x),x),x)+a*diff(y(x),x) = 0, y(x),'implicit')
Maple raw output
y(x) = _C1+_C2*x^(1-a)