ODE
\[ (a+1) y'(x)+x y''(x)+y(x)=0 \] ODE Classification
[[_Emden, _Fowler]]
Book solution method
TO DO
Mathematica ✓
cpu = 0.0623154 (sec), leaf count = 50
\[\left \{\left \{y(x)\to x^{-a/2} \left (c_2 \Gamma (1-a) J_{-a}\left (2 \sqrt {x}\right )+c_1 \Gamma (a+1) J_a\left (2 \sqrt {x}\right )\right )\right \}\right \}\]
Maple ✓
cpu = 0.013 (sec), leaf count = 29
\[ \left \{ y \left ( x \right ) ={x}^{-{\frac {a}{2}}} \left ( {{\sl Y}_{a}\left (2\,\sqrt {x}\right )}{\it \_C2}+{{\sl J}_{a}\left (2\,\sqrt {x}\right )}{\it \_C1} \right ) \right \} \] Mathematica raw input
DSolve[y[x] + (1 + a)*y'[x] + x*y''[x] == 0,y[x],x]
Mathematica raw output
{{y[x] -> (BesselJ[-a, 2*Sqrt[x]]*C[2]*Gamma[1 - a] + BesselJ[a, 2*Sqrt[x]]*C[1]
*Gamma[1 + a])/x^(a/2)}}
Maple raw input
dsolve(x*diff(diff(y(x),x),x)+(1+a)*diff(y(x),x)+y(x) = 0, y(x),'implicit')
Maple raw output
y(x) = x^(-1/2*a)*(BesselY(a,2*x^(1/2))*_C2+BesselJ(a,2*x^(1/2))*_C1)