4.28.19 \((1-a) y'(x)+x y''(x)+y(x)=0\)

ODE
\[ (1-a) y'(x)+x y''(x)+y(x)=0 \] ODE Classification

[[_Emden, _Fowler]]

Book solution method
TO DO

Mathematica
cpu = 0.0301097 (sec), leaf count = 50

\[\left \{\left \{y(x)\to x^{a/2} \left (c_1 \Gamma (1-a) J_{-a}\left (2 \sqrt {x}\right )+c_2 \Gamma (a+1) J_a\left (2 \sqrt {x}\right )\right )\right \}\right \}\]

Maple
cpu = 0.012 (sec), leaf count = 29

\[ \left \{ y \left ( x \right ) ={x}^{{\frac {a}{2}}} \left ( {{\sl Y}_{a}\left (2\,\sqrt {x}\right )}{\it \_C2}+{{\sl J}_{a}\left (2\,\sqrt {x}\right )}{\it \_C1} \right ) \right \} \] Mathematica raw input

DSolve[y[x] + (1 - a)*y'[x] + x*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> x^(a/2)*(BesselJ[-a, 2*Sqrt[x]]*C[1]*Gamma[1 - a] + BesselJ[a, 2*Sqrt[
x]]*C[2]*Gamma[1 + a])}}

Maple raw input

dsolve(x*diff(diff(y(x),x),x)+(1-a)*diff(y(x),x)+y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = x^(1/2*a)*(BesselY(a,2*x^(1/2))*_C2+BesselJ(a,2*x^(1/2))*_C1)