4.28.32 \(x y''(x)-(x+3) y'(x)+y(x)=0\)

ODE
\[ x y''(x)-(x+3) y'(x)+y(x)=0 \] ODE Classification

[_Laguerre]

Book solution method
TO DO

Mathematica
cpu = 0.0390818 (sec), leaf count = 26

\[\left \{\left \{y(x)\to c_2 e^x \left (x^2-4 x+6\right )+c_1 (x+3)\right \}\right \}\]

Maple
cpu = 0.031 (sec), leaf count = 22

\[ \left \{ y \left ( x \right ) ={\it \_C1}\, \left ( 3+x \right ) +{\it \_C2}\,{{\rm e}^{x}} \left ( {x}^{2}-4\,x+6 \right ) \right \} \] Mathematica raw input

DSolve[y[x] - (3 + x)*y'[x] + x*y''[x] == 0,y[x],x]

Mathematica raw output

{{y[x] -> (3 + x)*C[1] + E^x*(6 - 4*x + x^2)*C[2]}}

Maple raw input

dsolve(x*diff(diff(y(x),x),x)-(3+x)*diff(y(x),x)+y(x) = 0, y(x),'implicit')

Maple raw output

y(x) = _C1*(3+x)+_C2*exp(x)*(x^2-4*x+6)